Characterization of two melanoma cell lines resistant to BRAF/MEK inhibitors (vemurafenib and cobimetinib)

Dhanyamraju PK, Patel TN. Melanoma therapeutics: a literature review. J Biomed Res Educ Department Jiangsu Province. 2022;36:77.

CAS  Google Scholar 

Berk-Krauss J, Stein JA, Weber J, Polsky D, Geller AC. New systematic therapies and trends in cutaneous melanoma deaths among US whites, 1986–2016. Am J Public Health. 2020;110:731–3.

Article  PubMed  PubMed Central  Google Scholar 

Hartman RI, Lin JY. Cutaneous Melanoma-A Review in Detection, Staging, and Management. Hematol Oncol Clin North Am. 2019;33:25–38. https://pubmed.ncbi.nlm.nih.gov/30497675/. Cited 2024 May 29.

Leonardi GC, Falzone L, Salemi R, Zanghì A, Spandidos DA, Mccubrey JA et al. Cutaneous melanoma: From pathogenesis to therapy (Review). Int J Oncol; 2018;52:1071–80. https://pubmed.ncbi.nlm.nih.gov/29532857/. Cited 2024 May 29.

Subbiah V, Baik C, Kirkwood JM. Clinical Development of BRAF plus MEK Inhibitor Combinations. Trends Cancer; 2020;6:797–810. https://pubmed.ncbi.nlm.nih.gov/32540454/. Cited 2024 May 29.

Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with Vemurafenib in Melanoma with BRAF V600E Mutation. N Engl J Med New Engl J Med (NEJM/MMS). 2011;364:2507–16.

Article  CAS  Google Scholar 

Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nat Nat Publishing Group. 2002;417:949–54.

CAS  Google Scholar 

Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J et al. Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. N Engl J Med. 2014;140929070023009. http://www.nejm.org/doi/abs/10.1056/NEJMoa1406037. Cited 2014 Sep 29.

Johnson DB, Flaherty KT, Weber JS, Infante JR, Kim KB, Kefford RF, et al. Combined BRAF (Dabrafenib) and MEK inhibition (Trametinib) in patients with BRAFV600-mutant melanoma experiencing progression with single-agent BRAF inhibitor. J Clin Oncol J Clin Oncol. 2014;32:3697–704.

Article  CAS  PubMed  Google Scholar 

Beck D, Niessner H, Smalley KSM, Flaherty K, Paraiso KHT, Busch C, et al. Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells. Sci Signal. NIH Public Access. 2013;6:ra7.

Google Scholar 

Manzano JL, Layos L, Bugés C, De los Llanos Gil M, Vila L, Martínez-Balibrea E, et al. Resistant mechanisms to BRAF inhibitors in melanoma. Ann Transl Med AME Publishing Co. 2016;4:1–9.

Google Scholar 

Rossi A, Roberto M, Panebianco M, Botticelli A, Mazzuca F, Marchetti P. Drug resistance of BRAF-mutant melanoma: review of up-to-date mechanisms of action and promising targeted agents. Eur J Pharmacol Elsevier. 2019;862:172621.

Article  CAS  Google Scholar 

Ma W, Wu Z, Maghsoudloo M, Ijaz I, Dehghan Shasaltaneh M, Zhang Y, et al. Dermokine mutations contribute to epithelial-mesenchymal transition and advanced melanoma through ERK/MAPK pathways. PLoS One PLoS One. 2023;18:e0285806.

Article  CAS  PubMed  Google Scholar 

Xu Z, Zhang Y, Dai H, Han B. Epithelial-mesenchymal transition-mediated Tumor Therapeutic Resistance. Molecules: Molecules; 2022. p. 27.

Google Scholar 

Dratkiewicz E, Simiczyjew A, Pietraszek-Gremplewicz K, Mazurkiewicz J, Nowak D. Characterization of melanoma cell lines resistant to vemurafenib and evaluation of their responsiveness to EGFR-and MET-inhibitor treatment. Int J Mol Sci. 2020;21:1–20.

Google Scholar 

Piejko K, Cybulska-Stopa B, Ziętek M, Dziura R, Galus Ł, Kempa-Kamińska N, et al. Long-Term Real-World outcomes and Safety of Vemurafenib and Vemurafenib + Cobimetinib Therapy in patients with BRAF-Mutated Melanoma. Target Oncol Target Oncol. 2023;18:235–45.

Article  PubMed  Google Scholar 

Boespflug A, Thomas L. Cobimetinib and vemurafenib for the treatment of melanoma. Expert Opin Pharmacother. Expert Opin Pharmacother; 2016;17:1005–11. https://pubmed.ncbi.nlm.nih.gov/26999478/. Cited 2024 Jul 7.

Cellosaurus. cell line WM9 (CVCL_6806). https://www.cellosaurus.org/CVCL_6806.

Cellosaurus. cell line Hs 294T (CVCL_0331). https://www.cellosaurus.org/CVCL_0331.

Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Pietraszek-Gremplewicz K, Majkowski M, Kot M, et al. Melanoma cells with diverse invasive potential differentially induce the activation of normal human fibroblasts. Cell Commun Signal. 2022;20:63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5. http://www.ncbi.nlm.nih.gov/pubmed/5432063. Cited 2014 Jan 21.

Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76:4350–4. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=411572&tool=pmcentrez&rendertype=abstract.  Cited 2014 Jan 31.

Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Kot M, Pietraszek-Gremplewicz K, Wilk D, et al. Melanoma stimulates the proteolytic activity of HaCaT keratinocytes. Cell Commun Signal. 2022;20:1–17. https://doi.org/10.1186/s12964-022-00961-w.

Article  CAS  Google Scholar 

De Angelis ML, Francescangeli F, La Torre F, Zeuner A. Stem cell plasticity and dormancy in the development of Cancer Therapy Resistance. Front Oncol. 2019;9:1–14.

Google Scholar 

Alowaidi F, Hashimi SM, Alqurashi N, Alhulais R, Ivanovski S, Bellette B et al. Assessing stemness and proliferation properties of the newly established colon cancer ‘stem’ cell line, CSC480 and novel approaches to identify dormant cancer cells. Oncol Rep. Spandidos Publications; 2018;39:2881–91. https://pubmed.ncbi.nlm.nih.gov/29693155/. Cited 2020 Nov 26.

Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. Nature Publishing Group; 2017. pp. 611–29. https://pubmed.ncbi.nlm.nih.gov/28397828/.  Cited 2020 Nov 26.

Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia Neoplasia. 2015;17:1–15.

Article  PubMed  Google Scholar 

Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer Stem Cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923.

Luo W, Yao K. Molecular characterization and clinical implications of spindle cells in nasopharyngeal carcinoma: a novel molecule-morphology model of tumor progression proposed. PLoS One. 2013;8:e83135.

Cronin JC, Loftus SK, Baxter LL, Swatkoski S, Gucek M, Pavan WJ. Identification and functional analysis of SOX10 phosphorylation sites in melanoma. PLoS One Public Libr Sci. 2018;13:e0190834.

Article  Google Scholar 

Cimadamore F, Shah M, Amador-Arjona A, Navarro-Peran E, Chen C, Huang CT et al. SOX2 modulates levels of MITF in normal human melanocytes, and melanoma lines in vitro. Pigment Cell Melanoma Res. John Wiley & Sons, Ltd; 2012;25:533–6. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-148X.2012.01012.x. Cited 2024 Jul 3.

de Visser K, Jonkers J. Towards understanding the role of cancer-associated inflammation in chemoresistance. Curr Pharm Des Curr Pharm Des. 2009;15:1844–53.

Article  PubMed  Google Scholar 

Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med N Engl J Med. 2014;371:1867–76.

Article  PubMed  Google Scholar 

Dinter L, Karitzky PC, Schulz A, Wurm AA, Mehnert MC, Sergon M, et al. BRAF and MEK inhibitor combinations induce potent molecular and immunological effects in NRAS-mutant melanoma cells: insights into mode of action and resistance mechanisms. Int J cancer Int J Cancer. 2024;154:1057–72.

Article  CAS  PubMed  Google Scholar 

Atefi M, von Euw E, Attar N, Ng C, Chu C, Guo D, et al. Reversing melanoma cross-resistance to BRAF and MEK inhibitors by co-targeting the AKT/mTOR pathway. PLoS One Public Libr Sci. 2011;6:e28973.

Article  CAS  Google Scholar 

Jin Y, Chen Y, Tang H, Hu X, Hubert SM, Li Q, et al. Activation of PI3K/AKT pathway is a potential mechanism of Treatment Resistance in Small Cell Lung Cancer. Clin Cancer Res Am Association Cancer Res Inc. 2022;28:526–39.

Article  CAS  Google Scholar 

Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep Springer. 2020;47:4587.

Article  CAS  Google Scholar 

Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, et al. Mechanisms of acquired BRAF inhibitor resistance in Melanoma: a systematic review. Cancers (Basel). Cancers (Basel). 2020;12:1–29.

Article  Google Scholar 

Estrada Y, Dong J, Ossowski L. Positive crosstalk between ERK and p38 in melanoma stimulates migration and in vivo proliferation. Pigment Cell Melanoma Res Pigment Cell Melanoma Res. 2009;22:66–76.

Article  CAS  PubMed  Google Scholar 

Pietrobono S, De Paolo R, Mangiameli D, Marranci A, Battisti I, Franchin C, et al. p38 MAPK-dependent phosphorylation of transcription factor SOX2 promotes an adaptive response to BRAF inhibitors in melanoma cells. 2022;298(9):102353.

Hu L, Zou F, Grandis JR, Johnson DE. The JNK pathway in Drug Resistance. Target Cell Surviv pathways to Enhanc response to Chemother. Academic; 2019. pp. 87–100.

Google Scholar 

Fallahi-Sichani M, Moerke NJ, Niepel M, Zhang T, Gray NS, Sorger PK. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797.

Article  PubMed  Google Scholar 

Lidsky M, Antoun G, Speicher P, Adams B, Turley R, Augustine C, et al. Mitogen-activated protein kinase (MAPK) hyperactivation and enhanced NRAS expression drive acquired vemurafenib resistance in V600E BRAF melanoma cells. J Biol Chem J Biol Chem. 2014;289:27714–26.

Article  CAS  PubMed  Google Scholar 

Kozar I, Margue C, Rothengatter S, Haan C, Kreis S. Many ways to resistance: how melanoma cells evade targeted therapies. Biochim Biophys Acta - Rev Cancer Elsevier. 2019;1871:313–22.

Article  CAS  Google Scholar 

Smith MP, Ferguson J, Arozarena I, Hayward R, Marais R, Chapman A et al. Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J Natl Cancer Inst; 2013;105:33–46. https://pubmed.ncbi.nlm.nih.gov/23250956/.  Cited 2024 Jul 3.

Tangella LP, Clark ME, Gray ES. Resistance mechanisms to targeted therapy in BRAF-mutant melanoma - A mini review. Biochim Biophys Acta - Gen Subj Elsevier. 2021;1865:129736.

Article  CAS  Google Scholar 

Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013;19:1225–31.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif