Dhanyamraju PK, Patel TN. Melanoma therapeutics: a literature review. J Biomed Res Educ Department Jiangsu Province. 2022;36:77.
Berk-Krauss J, Stein JA, Weber J, Polsky D, Geller AC. New systematic therapies and trends in cutaneous melanoma deaths among US whites, 1986–2016. Am J Public Health. 2020;110:731–3.
Article PubMed PubMed Central Google Scholar
Hartman RI, Lin JY. Cutaneous Melanoma-A Review in Detection, Staging, and Management. Hematol Oncol Clin North Am. 2019;33:25–38. https://pubmed.ncbi.nlm.nih.gov/30497675/. Cited 2024 May 29.
Leonardi GC, Falzone L, Salemi R, Zanghì A, Spandidos DA, Mccubrey JA et al. Cutaneous melanoma: From pathogenesis to therapy (Review). Int J Oncol; 2018;52:1071–80. https://pubmed.ncbi.nlm.nih.gov/29532857/. Cited 2024 May 29.
Subbiah V, Baik C, Kirkwood JM. Clinical Development of BRAF plus MEK Inhibitor Combinations. Trends Cancer; 2020;6:797–810. https://pubmed.ncbi.nlm.nih.gov/32540454/. Cited 2024 May 29.
Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with Vemurafenib in Melanoma with BRAF V600E Mutation. N Engl J Med New Engl J Med (NEJM/MMS). 2011;364:2507–16.
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nat Nat Publishing Group. 2002;417:949–54.
Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J et al. Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. N Engl J Med. 2014;140929070023009. http://www.nejm.org/doi/abs/10.1056/NEJMoa1406037. Cited 2014 Sep 29.
Johnson DB, Flaherty KT, Weber JS, Infante JR, Kim KB, Kefford RF, et al. Combined BRAF (Dabrafenib) and MEK inhibition (Trametinib) in patients with BRAFV600-mutant melanoma experiencing progression with single-agent BRAF inhibitor. J Clin Oncol J Clin Oncol. 2014;32:3697–704.
Article CAS PubMed Google Scholar
Beck D, Niessner H, Smalley KSM, Flaherty K, Paraiso KHT, Busch C, et al. Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells. Sci Signal. NIH Public Access. 2013;6:ra7.
Manzano JL, Layos L, Bugés C, De los Llanos Gil M, Vila L, Martínez-Balibrea E, et al. Resistant mechanisms to BRAF inhibitors in melanoma. Ann Transl Med AME Publishing Co. 2016;4:1–9.
Rossi A, Roberto M, Panebianco M, Botticelli A, Mazzuca F, Marchetti P. Drug resistance of BRAF-mutant melanoma: review of up-to-date mechanisms of action and promising targeted agents. Eur J Pharmacol Elsevier. 2019;862:172621.
Ma W, Wu Z, Maghsoudloo M, Ijaz I, Dehghan Shasaltaneh M, Zhang Y, et al. Dermokine mutations contribute to epithelial-mesenchymal transition and advanced melanoma through ERK/MAPK pathways. PLoS One PLoS One. 2023;18:e0285806.
Article CAS PubMed Google Scholar
Xu Z, Zhang Y, Dai H, Han B. Epithelial-mesenchymal transition-mediated Tumor Therapeutic Resistance. Molecules: Molecules; 2022. p. 27.
Dratkiewicz E, Simiczyjew A, Pietraszek-Gremplewicz K, Mazurkiewicz J, Nowak D. Characterization of melanoma cell lines resistant to vemurafenib and evaluation of their responsiveness to EGFR-and MET-inhibitor treatment. Int J Mol Sci. 2020;21:1–20.
Piejko K, Cybulska-Stopa B, Ziętek M, Dziura R, Galus Ł, Kempa-Kamińska N, et al. Long-Term Real-World outcomes and Safety of Vemurafenib and Vemurafenib + Cobimetinib Therapy in patients with BRAF-Mutated Melanoma. Target Oncol Target Oncol. 2023;18:235–45.
Boespflug A, Thomas L. Cobimetinib and vemurafenib for the treatment of melanoma. Expert Opin Pharmacother. Expert Opin Pharmacother; 2016;17:1005–11. https://pubmed.ncbi.nlm.nih.gov/26999478/. Cited 2024 Jul 7.
Cellosaurus. cell line WM9 (CVCL_6806). https://www.cellosaurus.org/CVCL_6806.
Cellosaurus. cell line Hs 294T (CVCL_0331). https://www.cellosaurus.org/CVCL_0331.
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Pietraszek-Gremplewicz K, Majkowski M, Kot M, et al. Melanoma cells with diverse invasive potential differentially induce the activation of normal human fibroblasts. Cell Commun Signal. 2022;20:63.
Article CAS PubMed PubMed Central Google Scholar
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5. http://www.ncbi.nlm.nih.gov/pubmed/5432063. Cited 2014 Jan 21.
Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76:4350–4. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=411572&tool=pmcentrez&rendertype=abstract. Cited 2014 Jan 31.
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Kot M, Pietraszek-Gremplewicz K, Wilk D, et al. Melanoma stimulates the proteolytic activity of HaCaT keratinocytes. Cell Commun Signal. 2022;20:1–17. https://doi.org/10.1186/s12964-022-00961-w.
De Angelis ML, Francescangeli F, La Torre F, Zeuner A. Stem cell plasticity and dormancy in the development of Cancer Therapy Resistance. Front Oncol. 2019;9:1–14.
Alowaidi F, Hashimi SM, Alqurashi N, Alhulais R, Ivanovski S, Bellette B et al. Assessing stemness and proliferation properties of the newly established colon cancer ‘stem’ cell line, CSC480 and novel approaches to identify dormant cancer cells. Oncol Rep. Spandidos Publications; 2018;39:2881–91. https://pubmed.ncbi.nlm.nih.gov/29693155/. Cited 2020 Nov 26.
Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. Nature Publishing Group; 2017. pp. 611–29. https://pubmed.ncbi.nlm.nih.gov/28397828/. Cited 2020 Nov 26.
Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia Neoplasia. 2015;17:1–15.
Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer Stem Cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923.
Luo W, Yao K. Molecular characterization and clinical implications of spindle cells in nasopharyngeal carcinoma: a novel molecule-morphology model of tumor progression proposed. PLoS One. 2013;8:e83135.
Cronin JC, Loftus SK, Baxter LL, Swatkoski S, Gucek M, Pavan WJ. Identification and functional analysis of SOX10 phosphorylation sites in melanoma. PLoS One Public Libr Sci. 2018;13:e0190834.
Cimadamore F, Shah M, Amador-Arjona A, Navarro-Peran E, Chen C, Huang CT et al. SOX2 modulates levels of MITF in normal human melanocytes, and melanoma lines in vitro. Pigment Cell Melanoma Res. John Wiley & Sons, Ltd; 2012;25:533–6. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-148X.2012.01012.x. Cited 2024 Jul 3.
de Visser K, Jonkers J. Towards understanding the role of cancer-associated inflammation in chemoresistance. Curr Pharm Des Curr Pharm Des. 2009;15:1844–53.
Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med N Engl J Med. 2014;371:1867–76.
Dinter L, Karitzky PC, Schulz A, Wurm AA, Mehnert MC, Sergon M, et al. BRAF and MEK inhibitor combinations induce potent molecular and immunological effects in NRAS-mutant melanoma cells: insights into mode of action and resistance mechanisms. Int J cancer Int J Cancer. 2024;154:1057–72.
Article CAS PubMed Google Scholar
Atefi M, von Euw E, Attar N, Ng C, Chu C, Guo D, et al. Reversing melanoma cross-resistance to BRAF and MEK inhibitors by co-targeting the AKT/mTOR pathway. PLoS One Public Libr Sci. 2011;6:e28973.
Jin Y, Chen Y, Tang H, Hu X, Hubert SM, Li Q, et al. Activation of PI3K/AKT pathway is a potential mechanism of Treatment Resistance in Small Cell Lung Cancer. Clin Cancer Res Am Association Cancer Res Inc. 2022;28:526–39.
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep Springer. 2020;47:4587.
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, et al. Mechanisms of acquired BRAF inhibitor resistance in Melanoma: a systematic review. Cancers (Basel). Cancers (Basel). 2020;12:1–29.
Estrada Y, Dong J, Ossowski L. Positive crosstalk between ERK and p38 in melanoma stimulates migration and in vivo proliferation. Pigment Cell Melanoma Res Pigment Cell Melanoma Res. 2009;22:66–76.
Article CAS PubMed Google Scholar
Pietrobono S, De Paolo R, Mangiameli D, Marranci A, Battisti I, Franchin C, et al. p38 MAPK-dependent phosphorylation of transcription factor SOX2 promotes an adaptive response to BRAF inhibitors in melanoma cells. 2022;298(9):102353.
Hu L, Zou F, Grandis JR, Johnson DE. The JNK pathway in Drug Resistance. Target Cell Surviv pathways to Enhanc response to Chemother. Academic; 2019. pp. 87–100.
Fallahi-Sichani M, Moerke NJ, Niepel M, Zhang T, Gray NS, Sorger PK. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797.
Lidsky M, Antoun G, Speicher P, Adams B, Turley R, Augustine C, et al. Mitogen-activated protein kinase (MAPK) hyperactivation and enhanced NRAS expression drive acquired vemurafenib resistance in V600E BRAF melanoma cells. J Biol Chem J Biol Chem. 2014;289:27714–26.
Article CAS PubMed Google Scholar
Kozar I, Margue C, Rothengatter S, Haan C, Kreis S. Many ways to resistance: how melanoma cells evade targeted therapies. Biochim Biophys Acta - Rev Cancer Elsevier. 2019;1871:313–22.
Smith MP, Ferguson J, Arozarena I, Hayward R, Marais R, Chapman A et al. Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J Natl Cancer Inst; 2013;105:33–46. https://pubmed.ncbi.nlm.nih.gov/23250956/. Cited 2024 Jul 3.
Tangella LP, Clark ME, Gray ES. Resistance mechanisms to targeted therapy in BRAF-mutant melanoma - A mini review. Biochim Biophys Acta - Gen Subj Elsevier. 2021;1865:129736.
Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013;19:1225–31.
留言 (0)