Yadav H, et al. CNN and bidirectional GRU-based heartbeat sound classification architecture for elderly people. Mathematics. 2023;11(6):1365.
Alrabie S, Barnawi A. Evaluation of pre-trained CNN models for cardiovascular disease classifification: a benchmark study. Inform Sci Lett. 2023. https://doi.org/10.18576/isl/120755.
Yaseen Y.G. Son, Kwon S. Classification of heart sound signal using multiple Features. Appl Sci. 2018. https://doi.org/10.3390/app8122344.
Montinari MR, Minelli S. The first 200 years of cardiac auscultation and future perspectives. J Multidiscip Healthc. 2019;12:183–9.
Attenhofer Jost CH, et al. Echocardiography in the evaluation of systolic murmurs of unknown cause. Am J Med. 2000;108(8):614–20.
Elola A, et al. Beyond heart murmur detection: automatic murmur grading from phonocardiogram. IEEE J Biomed Health Inform. 2023;27(8):3856–66.
Oliveira J et al. The CirCor DigiScope Phonocardiogram Dataset (version 1.0. 3). PhysioNet, 2022.
Ismail S, Siddiqi I, Akram U. Localization and classification of heart beats in phonocardiography signals —a comprehensive review. EURASIP J Adv Signal Proc. 2018. https://doi.org/10.1186/s13634-018-0545-9.
Ozcan F, Alkan A. Explainable audio CNNs applied to neural decoding: sound category identification from inferior colliculus. Signal Image Video Proc. 2024;18(2):1193–204.
Syed ZS, Memon SA, Memon AL. Deep acoustic embeddings for identifying parkinsonian speech. Int J Adv Comput Sci Appl. 2020. https://doi.org/10.14569/IJACSA.2020.0111089.
Cramer J, et al. Look listen and learn more: design choices for deep audio embeddings. IEEE. 2019. https://doi.org/10.1109/ICASSP.2019.8682475.
Loh HW, et al. Application of explainable artificial intelligence for healthcare: a systematic review of the last decade (2011–2022). Comput Methods Prog Biomed. 2022;226:107161.
Kirmaci H. Çelişik Olmayan Önermelerden Oluşan Bir Bilim Dili Arayışı: Gösterim Teorisinden Sonra Russell’ın Tanımlı Be- timlemeler Teorisi ve Denotasyon Anlayışı. Kahramanmaraş Sütçü İmam Üniversitesi İlahiyat Fakültesi Dergisi. 2023;42:1–19.
Dissanayake T, et al. A robust interpretable deep learning classifier for heart anomaly detection without segmentation. IEEE J Biomed Health Inform. 2021;25:2162–71.
Vilone G, Longo L. Notions of explainability and evaluation approaches for explainable artificial intelligence. Inform Fusion. 2021;76:89–106.
Tjoa E, Guan C. A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans Neural Netw Learn Syst. 2021;32:4793–813.
Di Martino F, Delmastro F. Explainable AI for clinical and remote health applications: a survey on tabular and time series data. Artif Intell Rev. 2023;56(6):5261–315.
Wang M, et al. Transfer learning models for detecting six categories of phonocardiogram recordings. J Cardiovasc Dev Dis. 2022. https://doi.org/10.3390/jcdd9030086.
Azmy MM. Automatic diagnosis of heart sounds using bark spectrogram cepstral coefficients. J Med Res Inst. 2022. https://doi.org/10.21608/jmalexu.2023.281402.
Maity A, Pathak A, Saha G. Transfer learning based heart valve disease classification from Phonocardiogram signal. Biomed Signal Proc Control. 2023. https://doi.org/10.1016/j.bspc.2023.104805.
Yang C, et al. Abnormal heart sound detection from unsegmented phonocardiogram using deep features and shallow classifiers. Multimed Tools Appl. 2023. https://doi.org/10.1007/s11042-022-14315-8.
Bhardwaj A, Singh S, Joshi D. Explainable deep convolutional neural network for valvular heart diseases classification using PCG signals. IEEE Trans Instrum Measurement. 2023. https://doi.org/10.1109/TIM.2023.3274174.
Nguyen MT, Lin WW, Jin HH. Heart sound classification using deep learning techniques based on log-mel spectrogram. Circ Syst Signal Proc. 2023. https://doi.org/10.1007/s00034-022-02124-1.
Donkada S et al. Early Heart Disease Detection Using Mel-Spectrograms and Deep Learning, in IEEE Conference on ICT Solutions for eHealth, IEEE, Editor. 2023.
Pleva M, Martens E, Juhar J Automated Covid-19 Respiratory Symptoms Analysis from Speech and Cough, in SAMI 2022 • IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics. 2022.
Gurjot S, et al. An automated diagnosis model for classifying cardiac abnormality utilizing deep neural networks. Multimed Tools Appl. 2023. https://doi.org/10.1007/s11042-023-16930-5.
Tatulli E, Souriau R, Fontecave-Jallon J. Unsupervised segmentation of heart sounds from abrupt changes detection. Amsterdam: Elsevier; 2023.
Fuadah YN, Pramudito MA, Lim KM. An optimal approach for heart sound classification using grid search in hyperparameter optimization of machine learning. Bioengineering (Basel). 2022. https://doi.org/10.3390/bioengineering10010045.
Arjoune Y, et al. A noise-robust heart sound segmentation algorithm based on shannon energy. IEEE Access. 2024. https://doi.org/10.1109/ACCESS.2024.3351570.
Ding J, Li J, Xu M. Classification of murmurs in PCG using combined frequency domain and physician inspired features. Comput Cardiol. 2022. https://doi.org/10.1371/journal.pdig.0000324.
Bondareva E, et al. Embracing the imaginary: deep complex-valued networks for heart murmur detection. Comput Cardiol. 2022. https://doi.org/10.22489/CinC.2022.071.
Summerton S, et al. Two-stage classification for detecting murmurs from phonocardiograms using deep and expert features. Comput Cardiol. 2022. https://doi.org/10.1371/journal.pdig.0000324.
Xu Y, et al. Hierarchical multi-scale convolutional network for murmurs detection on PCG signals. Comput Cardiol. 2022. https://doi.org/10.1038/s41598-024-58274-6.
Lu H, et al. A lightweight robust approach for automatic heart murmurs and clinical outcomes classification from phonocardiogram recordings. Comput Cardiol. 2022. https://doi.org/10.1371/journal.pdig.0000324.
Costandache M, Cioata M, Iftene A. Automated heart murmur detection using sound processing techniques. Procedia Comput Sci. 2023;225(7):2961–70.
Guo L, Darvenport S and Peng Y. Deep CardioSound-An Ensembled Deep Learning Model for Heart Sound MultiLabelling.
Andrade L, Camacho R and Oliveira J, A Deep Learning approach to infer morphological characteristics of the heart from cardiac sound analysis, in 12th International Conference on Bioscience, Biochemistry. 2023.
Chen Y et al. A heart sound classification method based on residual block and attention mechanism, in 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications, IEEE, Editor. 2022.
Xu C, et al. Cardiac murmur grading and risk analysis of cardiac diseases based on adaptable heterogeneous-modality multi-task learning. Health Inf Sci Syst. 2024;12(1):2.
Martins ML, Coimbra MT, Renna F. Markov-based neural networks for heart sound segmentation: using domain knowledge in a principled way. IEEE J Biomed Health Inform. 2023;27(11):5357–68.
Alkhodari M, Hadjileontiadis LJ, Khandoker AH. Identification of congenital valvular murmurs in young patients using deep learning-based attention transformers and phonocardiograms. IEEE J Biomed Health Inform. 2024. https://doi.org/10.1109/JBHI.2024.3357506.
CesarelliM et al. Deep learning for heartbeat phonocardiogram signals explainable classification, in 2022 IEEE 22nd International Conference on Bioinformatics and Bioengineering (BIBE). 2022.
Rajeshwari BS, et al. Detection of phonocardiogram event patterns in mitral valve prolapse: an automated clinically relevant explainable diagnostic framework. IEEE Trans Instru Meas. 2023;72:1–9.
Freeman A, Levine S. The clinical significance of the systolic murmur a study of 1000 consecutive “non-cardiac” cases. Ann Intern Med. 1933. https://doi.org/10.7326/0003-4819-6-11-1371.
Oliveira J, et al. The CirCor DigiScope dataset: from murmur detection to murmur classification. IEEE J Biomed Health Inform. 2022;26(6):2524–35.
Peng X, et al. Multi-class voice disorder classification using openL3-SVM. SSRN eLibrary. 2022. https://doi.org/10.2139/ssrn.4047840.
Douglas O. Speech Communications: Human and Machine. 1987, http://ieeexplore.ieee.org/document/5312112: Addison-Wesley Publishing Company.
Özcan F, Alkan A. Neural decoding of inferior colliculus multiunit activity for sound category identification with temporal correlation and transfer learning. Network-Comput Neural Syst. 2024. https://doi.org/10.1080/0954898X.2023.2282576.
Matlab, Standard Deviation. 2024a.
Ozcan F, Alkan A. Frontal cortex neuron type classification with deep learning and recurrence plot. Traitement du Signal. 2021;38:3.
留言 (0)