Memetic ant colony optimization for multi-constrained cognitive diagnostic test construction

Bauer A, Bullnheimer B, Hartl R, et al (1999) An ant colony optimization approach for the single machine total tardiness problem. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406). IEEE, https://doi.org/10.1109/cec.1999.782653

Bullnheimer RFSCBernd; Hartl. A new rank based version of the ant system: a computational study. Cent Eur J Oper Res. 1999;7(1):25–38.

MathSciNet  Google Scholar 

Cao X, Ge YF, Lin Y. Constructing multi-constrained cognitive diagnostic tests: An improved ant colony optimization algorithm. In: Health Information Science (HIS 2023), vol. 14305. Singapore: Springer Nature; 2023. p. 354–65.

Chapter  Google Scholar 

Cao X, Lin Y, Liu D, et al. Novel item selection strategies for cognitive diagnostic computerized adaptive testing: a heuristic search framework. Behav Res Methods. 2023;56(4):2859–85. https://doi.org/10.3758/s13428-023-02228-9.

Article  Google Scholar 

Carmines EG, Zeller RA (1979) Reliability and validity assessment. Sage publications

Cheng K, Wang L, Shen Y, et al. Secure k-NN query on encrypted cloud data with multiple keys. IEEE Trans Big Data. 2017;7(4):689–702. https://doi.org/10.1109/TBDATA.2017.2707552.

Article  Google Scholar 

von Davier M. A general diagnostic model applied to language testing data. ETS Res Rep Series. 2005. https://doi.org/10.1002/j.2333-8504.2005.tb01993.x.

Article  Google Scholar 

de la Torre J. The generalized DINA model framework. Psychometrika. 2011;76(2):179–99. https://doi.org/10.1007/s11336-011-9207-7.

Article  MathSciNet  Google Scholar 

Dong Y, Ma X, Wang C, et al. An optimal choice of cognitive diagnostic model for second language listening comprehension test. Front Psychol. 2021. https://doi.org/10.3389/fpsyg.2021.608320.

Article  Google Scholar 

Dorigo M (1992) Optimization, learning and natural algorithms. PhD thesis, Politecnico di Milano.

Dorigo M, Gambardella L. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evolut Comput. 1997;1(1):53–66. https://doi.org/10.1109/4235.585892.

Article  Google Scholar 

Dorigo M, Gambardella LM. Ant colonies for the travelling salesman problem. Biosystems. 1997;43(2):73–81. https://doi.org/10.1016/s0303-2647(97)01708-5.

Article  Google Scholar 

Dorigo M, Stützle T, 2018 Ant colony optimization: Overview and recent advances. In: Gendreau PJM. (ed) Handbook of Metaheuristics. International Series in Operations Research & Management Science, Springer International Publishing, pp. 311–351.

Dorigo M, Maniezzo V, Colorni A. The ant system: An autocatalytic optimizing process. Dipartimento di Elettronica e Informazione, Politecnico di Milano: Tech. rep; 1991.

Google Scholar 

Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B. 1996;26(1):29–41.

Article  Google Scholar 

Finkelman M, Kim W, Roussos LA. Automated test assembly for cognitive diagnosis models using a genetic algorithm. J Educ Meas. 2009;46(3):273–92. https://doi.org/10.1111/j.1745-3984.2009.00081.x.

Article  Google Scholar 

Finkelman MD, Kim W, Roussos L, et al. A binary programming approach to automated test assembly for cognitive diagnosis models. Appl Psychol Meas. 2010;34(5):310–26. https://doi.org/10.1177/0146621609344846.

Article  Google Scholar 

Gambardella L, Dorigo M (1996) Solving symmetric and asymmetric TSPs by ant colonies. In: Proceedings of IEEE International Conference on Evolutionary Computation. IEEE, https://doi.org/10.1109/icec.1996.542672

Ge YF, Yu WJ, Cao J, et al. Distributed memetic algorithm for outsourced database fragmentation. IEEE Trans Cybern. 2021;51(10):4808–21. https://doi.org/10.1109/tcyb.2020.3027962.

Article  Google Scholar 

Ge YF, Zhan ZH, Cao J, et al. DSGA: a distributed segment-based genetic algorithm for multi-objective outsourced database partitioning. Inform Sci. 2022;612:864–86. https://doi.org/10.1016/j.ins.2022.09.003.

Article  Google Scholar 

Ge YF, Bertino E, Wang H, et al. Distributed cooperative coevolution of data publishing privacy and transparency. ACM Trans Knowl Discov Data. 2023;18(1):1–23. https://doi.org/10.1145/3613962.

Article  Google Scholar 

Ge YF, Wang H, Bertino E, et al. Evolutionary dynamic database partitioning optimization for privacy and utility. IEEE Trans Depend Secur Comput. 2023;21(4):2296–311. https://doi.org/10.1109/tdsc.2023.3302284.

Article  Google Scholar 

Hartz SM (2002) A bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality. PhD thesis, University of Illinois, Urbana-Champaign

Henson R, Douglas J. Test construction for cognitive diagnosis. Appl Psychol Meas. 2005;29(4):262–77. https://doi.org/10.1177/0146621604272623.

Article  MathSciNet  Google Scholar 

Henson R, Roussos L, Douglas J, et al. Cognitive diagnostic attribute-level discrimination indices. Appl Psychol Meas. 2008;32(4):275–88. https://doi.org/10.1177/0146621607302478.

Article  MathSciNet  Google Scholar 

Jha M, Gupta R, Saxena R. A framework for in-vivo human brain tumor detection using image augmentation and hybrid features. Health Inform Sci Syst. 2022. https://doi.org/10.1007/s13755-022-00193-9.

Article  Google Scholar 

Lin Y, Gong YJ, Zhang J. An adaptive ant colony optimization algorithm for constructing cognitive diagnosis tests. Appl Soft Comput. 2017;52:1–13. https://doi.org/10.1016/j.asoc.2016.11.042.

Article  Google Scholar 

Lord FM. Applications of item response theory to practical testing problems. Routledge; 1980.

Mavrovouniotis M, Yang S. A memetic ant colony optimization algorithm for the dynamic travelling salesman problem. Soft Comput. 2010;15(7):1405–25. https://doi.org/10.1007/s00500-010-0680-1.

Article  Google Scholar 

Mavrovouniotis M, Müller FM, Yang S (2015) An ant colony optimization based memetic algorithm for the dynamic travelling salesman problem. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. ACM, GECCO ’15, https://doi.org/10.1145/2739480.2754651

Mavrovouniotis M, Bonilha IS, Muller FM, (2019) Effective ACO-based memetic algorithms for symmetric and asymmetric dynamic changes. In, et al. IEEE Congress on Evolutionary Computation (CEC). IEEE. 2019. https://doi.org/10.1109/cec.2019.8790025.

Pandey D, Wang H, Yin X, et al. Automatic breast lesion segmentation in phase preserved DCE-MRIs. Health Inform Sci Syst. 2022. https://doi.org/10.1007/s13755-022-00176-w.

Article  Google Scholar 

Pang X, Ge YF, Wang K, et al. Patient assignment optimization in cloud healthcare systems: a distributed genetic algorithm. Health Inform Sci Syst. 2023. https://doi.org/10.1007/s13755-023-00230-1.

Article  Google Scholar 

Patil DR, Pattewar TM. Majority voting and feature selection based network intrusion detection system. EAI Endors Trans Scal Inform Syst. 2022. https://doi.org/10.4108/eai.4-4-2022.173780.

Article  Google Scholar 

Sharifipour H, Shakeri M, Haghighi H. Structural test data generation using a memetic ant colony optimization based on evolution strategies. Swarm Evolut Comput. 2018;40:76–91. https://doi.org/10.1016/j.swevo.2017.12.009.

Article  Google Scholar 

Singh R, Subramani S, Du J, et al. Antisocial behavior identification from twitter feeds using traditional machine learning algorithms and deep learning. EAI Endorsed Trans Scal Inform Syst. 2023. https://doi.org/10.4108/eetsis.v10i3.3184.

Article  Google Scholar 

Stutzle T, Hoos H (1997) MAX-MIN ant system and local search for the traveling salesman problem. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation. IEEE, https://doi.org/10.1109/icec.1997.592327

Stützle T, Hoos H, Improvements on the ant-system: Introducing the MAX-MIN ant system. In: Artificial Neural Nets and Genetic Algorithms. Springer Vienna, 1998;245–249, https://doi.org/10.1007/978-3-7091-6492-1_54

Stützle T, Hoos HH. MAX-MIN ant system. Futur Gener Comput Syst. 2000;16(8):889–914. https://doi.org/10.1016/s0167-739x(00)00043-1.

Article  Google Scholar 

Swanson L, Stocking ML. A model and heuristic for solving very large item selection problems. Appl Psychol Meas. 1993;17(2):151–66. https://doi.org/10.1177/014662169301700205.

Article  Google Scholar 

Wang H, Yi X, Bertino E, et al. Protecting outsourced data in cloud computing through access management. Concurr Comput Pract Exp. 2014;28(3):600–15. https://doi.org/10.1002/cpe.3286.

Article  Google Scholar 

Wang X, Choi TM, Liu H, et al. Novel ant colony optimization methods for simplifying solution construction in vehicle routing problems. IEEE Trans Intell Transp Syst. 2016;17(11):3132–41. https://doi.org/10.1109/tits.2016.2542264.

Article  Google Scholar 

Wang YC (2009) Factor analytic models and cognitive diagnostic models: How comparable are they?-A comparison of R-RUM and compensatory MIRT model with respect to cognitive feedback. PhD thesis, The University of North Carolina at Greensboro, https://www.proquest.com/openview/1b1268d4ec122aea2e2f317e517a61eb/1.

Wang Z, Xing H, Li T, et al. A modified ant colony optimization algorithm for network coding resource minimization. IEEE Trans Evolut Comput. 2016;20(3):325–42. https://doi.org/10.1109/tevc.2015.2457437.

Article  Google Scholar 

You M, Yin J, Wang H, et al. A knowledge graph empowered online learning framework for access control decision-making. World Wide Web. 2022;26(2):827–48. https://doi.org/10.1007/s11280-022-01076-5.

Article  Google Scholar 

Zeng Y, Liu D, Wang Y. Identification of phosphorylation site using S-padding strategy based convolutional neural network. Health Inform Sci Syst. 2022. https://doi.org/10.1007/s13755-022-00196-6.

Article  Google Scholar 

留言 (0)

沒有登入
gif