KSDKG: construction and application of knowledge graph for kidney stone disease based on biomedical literature and public databases

Hao X, Shao Z, Zhang N, Jiang M, Cao X, Li S, Guan Y, Wang C. Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture. Nat Commun. 2023;14(1):7498.

Article  Google Scholar 

Gillams K, Juliebø-Jones P, Juliebø SØ, Somani BK. Gender differences in kidney stone disease (ksd): findings from a systematic review. Curr Urol Rep. 2021;22:1–8.

Article  Google Scholar 

Goldfarb DS, Avery AR, Beara-Lasic L, Duncan GE, Goldberg J. A twin study of genetic influences on nephrolithiasis in women and men. Kidney Int Rep. 2019;4(4):535–40.

Article  Google Scholar 

Chmiel JA, Stuivenberg GA, Al KF, Akouris PP, Razvi H, Burton JP, Bjazevic J. Vitamins as regulators of calcium-containing kidney stones-new perspectives on the role of the gut microbiome. Nat Rev Urol. 2023;20(10):615–37.

Article  Google Scholar 

Crivelli JJ, Maalouf NM, Paiste HJ, Wood KD, Hughes AE, Oates GR, Assimos DG. Disparities in kidney stone disease: a scoping review. J Urol. 2021;206(3):517–25.

Article  Google Scholar 

Li L, Liu M, Lai C, Ji W, Xu K, Zhou Y. Analysis of residual stones in patients and related influencing factors after percutaneous nephrolithotomy: a retrospective study. In: 2023 IEEE 11th international conference on healthcare informatics (ICHI). IEEE; 2023. p. 32–39.

Peerapen P, Thongboonkerd V. Kidney stone prevention. Adv Nutr. 2023;14(3):555–69.

Article  Google Scholar 

Sassanarakkit S, Peerapen P, Thongboonkerd V. Stonemod: a database for kidney stone modulatory proteins with experimental evidence. Sci Rep. 2020;10(1):15109.

Article  Google Scholar 

Liu M, Luo J, Li L, Pan X, Tan S, Ji W, Zhang H, Tang S, Liu J, Wu B, et al. Design and development of a disease-specific clinical database system to increase the availability of hospital data in china. Health Inf Sci Syst. 2023;11(1):11.

Article  Google Scholar 

Hogan A, Blomqvist E, Cochez M, d’Amato C, Melo GD, Gutierrez C, Kirrane S, Gayo JEL, Navigli R, Neumaier S, et al. Knowledge graphs. ACM Comput Surv (Csur). 2021;54(4):1–37.

Article  Google Scholar 

Peng C, Xia F, Naseriparsa M, Osborne F. Knowledge graphs: opportunities and challenges. Artif Intell Rev. 2023;56(11):13071–102.

Article  Google Scholar 

Zhong L, Wu J, Li Q, Peng H, Wu X. A comprehensive survey on automatic knowledge graph construction. ACM Comput Surv. 2023;56(4):1–62.

Article  Google Scholar 

Wang T, Zhang Y, Zhang Y, Lu H, Yu B, Peng S, Ma Y, Li D. A hybrid model based on deep convolutional network for medical named entity recognition. J Electr Comput Eng. 2023;2023(1):8969144.

Google Scholar 

Aldwairi M, Jarrah M, Mahasneh N, Al-khateeb B. Graph-based data management system for efficient information storage, retrieval and processing. Inf Process Manage. 2023;60(2): 103165.

Article  Google Scholar 

Ji X, Ritter A, Yen P-Y. Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews. J Biomed Inform. 2017;69:33–42.

Article  Google Scholar 

Wu X, Duan J, Pan Y, Li M. Medical knowledge graph: data sources, construction, reasoning, and applications. Big Data Min Anal. 2023;6(2):201–17.

Article  Google Scholar 

Chen A, Huang R, Wu E, Han R, Wen J, Li Q, Zhang Z, Shen B. The generation of a lung cancer health factor distribution using patient graphs constructed from electronic medical records: retrospective study. J Med Internet Res. 2022;24(11):40361.

Article  Google Scholar 

Zhao X, Wang Y, Wen T. The construction of a tcm knowledge graph and application of potential knowledge discovery in diabetic kidney disease by integrating diagnosis and treatment guidelines and real-world clinical data. Front Pharmacol. 2023;14:1147677.

Article  Google Scholar 

Liu F, Liu M, Li M, Xin Y, Gao D, Wu J, Zhu J. Automatic knowledge extraction from Chinese electronic medical records and rheumatoid arthritis knowledge graph construction. Quant Imaging Med Surg. 2023;13(6):3873.

Article  Google Scholar 

An B. Construction and application of Chinese breast cancer knowledge graph based on multi-source heterogeneous data. Math Biosci Eng. 2023;20(4):6776–99.

Article  Google Scholar 

Jin S, Liang H, Zhang W, Li H, et al. Knowledge graph for breast cancer prevention and treatment: literature-based data analysis study. JMIR Med Inform. 2024;12(1):52210.

Article  Google Scholar 

Papadakis E, Baryannis G, Batsakis S, Adamou M, Huang Z, Antoniou G. Adhd-kg: a knowledge graph of attention deficit hyperactivity disorder. Health Inf Sci Syst. 2023;11(1):52.

Article  Google Scholar 

Feng F, Tang F, Gao Y, Zhu D, Li T, Yang S, Yao Y, Huang Y, Liu J. Genomickb: a knowledge graph for the human genome. Nucl Acids Res. 2023;51(D1):950–6.

Article  Google Scholar 

Chandak P, Huang K, Zitnik M. Building a knowledge graph to enable precision medicine. Sci Data. 2023;10(1):67.

Article  Google Scholar 

Santos A, Colaço AR, Nielsen AB, Niu L, Strauss M, Geyer PE, Coscia F, Albrechtsen NJW, Mundt F, Jensen LJ, et al. A knowledge graph to interpret clinical proteomics data. Nat Biotechnol. 2022;40(5):692–702.

Article  Google Scholar 

Byambasuren O, Yang Y, Sui Z, Dai D, Chang B, Li S, Zan H. Preliminary study on the construction of Chinese medical knowledge graph. J Chin Inf Process. 2019;33(10):1–9.

Google Scholar 

White J. Pubmed 2.0. Med Ref Serv Q. 2020;39(4):382–7.

Article  Google Scholar 

Ali W, Saleem M, Yao B, Hogan A, Ngomo A-CN. A survey of RDF stores & SPARQL engines for querying knowledge graphs. VLDB J. 2022;31:1–26.

Article  Google Scholar 

Ait-Mokhtar S, Bruijn B, Hagege C, Rupi P. Intermediary-stage ie components. Technical report, D3. 5. Technical report, EURECA Project; 2014.

Khiari A. Identification of variants of compound terms. PhD thesis, Master Thesis. Technical Report. Université Paul Sabatier, Toulouse; 2015.

Fu C, Zhong R, Jiang X, He T, Jiang X. An integrated knowledge graph for microbe-disease associations. In: Health information science: 9th international conference, HIS 2020, Amsterdam, The Netherlands, October 20–23, 2020, proceedings 9. Springer; 2020. p. 79–90.

Paul S, Mitra A, Koner C. A review on graph database and its representation. In: 2019 international conference on recent advances in energy-efficient computing and communication (ICRAECC). IEEE; 2019. pp. 1–5.

Güting RH. Graphdb: modeling and querying graphs in databases. In: VLDB, vol. 94, Citeseer; 1994. pp. 12–15.

Lan G, Liu T, Wang X, Pan X, Huang Z. A semantic web technology index. Sci Rep. 2022;12(1):3672.

Article  Google Scholar 

Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, Ebert D, Feuermann M, Gaudet P, Harris NL, et al. The gene ontology knowledgebase in 2023. Genetics. 2023;224(1):031.

Google Scholar 

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. Kegg: new perspectives on genomes, pathways, diseases and drugs. Nucl Acids Res. 2017;45(D1):353–61.

Article  Google Scholar 

Tzelves L, Türk C, Skolarikos A. European association of urology urolithiasis guidelines: where are we going? Eur Urol Focus. 2021;7(1):34–8.

Article  Google Scholar 

Pan S, Luo L, Wang Y, Chen C, Wang J, Wu X. Unifying large language models and knowledge graphs: a roadmap. IEEE Trans Knowl Data Eng. 2024. https://doi.org/10.1109/TKDE.2024.3352100.

Article  Google Scholar 

Singhal K, Azizi S, Tu T, Mahdavi SS, Wei J, Chung HW, Scales N, Tanwani A, Cole-Lewis H, Pfohl S, et al. Large language models encode clinical knowledge. Nature. 2023;620(7972):172–80.

Article  Google Scholar 

留言 (0)

沒有登入
gif