Impact of Enolase in Allergic Disease

Pancholi V. Multifunctional a α-enolase: its role in diseases. Cell Mol Life Sci. 2001;58:902–20. https://doi.org/10.1007/pl00000910.

Article  CAS  PubMed  Google Scholar 

Gerlt JA, Babbitt PC, Jacobson MP, Almo SC. Divergent evolution in enolase superfamily: Strategies for assigning functions. JBC. 2012;287:29–34. https://doi.org/10.1074/jbc.R111.240945.

Article  CAS  Google Scholar 

Qiao G, Wu A, Chen X, Tian Y, Lin X. Enolase 1, a moonlighting protein, as a potential target for cancer treatment. Int J Biol Sci. 2021;17:3981–92. https://doi.org/10.7150/ijbs.63556.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Angeletti A, Migliorini P, Bruschi M, Pratesi F, Candiano G, Prunotto M, et al. Anti-alpha enolase multi-antibody specificity in human diseases. Clinical significance and molecular mechanisms. Autoimmun Rev. 2021;20:102977. https://doi.org/10.1016/J.AUTREV.2021.102977.

Article  CAS  PubMed  Google Scholar 

Morales-Amparano MB, Huerta-Ocampo JÁ, Pastor-Palacios G, Teran LM. The Role of Enolases in Allergic Disease. J Allergy Clin Immunol Pract. 2021;9:3026–32. https://doi.org/10.1016/j.jaip.2021.04.005.

Article  CAS  PubMed  Google Scholar 

Breitenbach M, Simon B, Probst G, Oberkofler H, Ferreira F, Briza P, et al. Enolases are highly conserved fungal allergens. Int Arch Allergy Immunol. 1997;113:114–7. https://doi.org/10.1159/000237521.

Article  CAS  PubMed  Google Scholar 

Sližienė A, Plečkaitytė M, Zaveckas M, Juškaitė K, Rudokas V, Žvirblis G, et al. Monoclonal antibodies against the newly identified allergen β-enolase from common carp (Cyprinus carpio). Food Agri Immunol. 2022;33:129–49. https://doi.org/10.1080/09540105.2022.2028741.

Article  CAS  Google Scholar 

Kuehn A, Hilger C, Lehners-Weber C, Codreanu-Morel F, Morisset M, Metz-Favre C, et al. Identification of enolases and aldolases as important fish allergens in cod, salmon and tuna: Component resolved diagnosis using parvalbumin and the new allergens. Clin Exp Allergy. 2013;43:811–22. https://doi.org/10.1111/cea.12117.

Article  CAS  PubMed  Google Scholar 

Kuehn A, Codreanu-Morel F, Lehners-Weber C, Doyen V, Gomez-André SA, Bienvenu F, et al. Cross-reactivity to fish and chicken meat – a new clinical syndrome. EAACI. 2016;71:1772–81. https://doi.org/10.1111/all.12968.

Article  CAS  Google Scholar 

Tomm JM, Van Do T, Jende C, Simon JC, Treudler R, Von Bergen M, et al. Identification of New Allergens from Nile Perch (Lates niloticus) and Cod (Gadus morhua). J Investig Allergol Clin Immunol. 2013;23:159–67.

CAS  PubMed  Google Scholar 

Haroun Díaz E, Martín-Pedraza L, Betancor D, Somoza ML, Blanca-López N, Vázquez de la Torre M, et al. Selective allergy to whiff (Lepidorhombus whiffiagonis): identification of enolase as a new major allergen. J Investig Allergol Clin Immunol. 2023;33:45–7. https://doi.org/10.18176/jiaci.0802.

Article  PubMed  Google Scholar 

Bernton HS, Brown H, Washington DC. Insect allergy-Preliminary studies of the cockroach. JAllergy. 1964;35:506–13. https://doi.org/10.1016/0021-8707(64)90082-6.

Article  CAS  Google Scholar 

Chuang JG, Su SN, Chiang BL, Lee HJ, Chow LP. Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics. 2010;10:3854–67. https://doi.org/10.1002/pmic.201000348.

Article  CAS  PubMed  Google Scholar 

Wang L, Xiong Q, Saelim N, Wang L, Nong W, Wan ATY, et al. Genome assembly and annotation of Periplaneta americana reveal a comprehensive cockroach allergen profile. Allergy. 2023;78:1088–103. https://doi.org/10.1111/all.15531.

Article  CAS  PubMed  Google Scholar 

Yang Y, Liu H, Zeng W, Yang Y, Zhang J, Yin J, et al. Characterization and epitope prediction of phosphopyruvate hydratase from Penaeus monodon (black tiger shrimp). J Food Sci. 2021;86:3457–66. https://doi.org/10.1111/1750-3841.15819.

Article  CAS  PubMed  Google Scholar 

Karnaneedi S, Huerlimann R, Johnston EB, Nugraha R, Ruethers T, Taki AC, et al. Novel allergen discovery through comprehensive de novo transcriptomic analyses of five shrimp species. Int J Mol Sci. 2021;22:1–24. https://doi.org/10.3390/ijms22010032.

Article  CAS  Google Scholar 

Chang X, Zhang T, Zang J, Lv C, Zhao G. Characterization and Structural Analyses of Enolase from Shrimp (Litopenaeus vannamei). J Agric Food Chem. 2023;71:19783–90. https://doi.org/10.1021/acs.jafc.3c07135.

Article  CAS  PubMed  Google Scholar 

Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res Spec Publ. 2022;50:W276–9. https://doi.org/10.1093/nar/gkac240.

Article  CAS  Google Scholar 

Abel-Fernández E, Martínez MJ, Galán T, Pineda F. Going over Fungal Allergy: Alternaria alternata and Its Allergens. JoF. 2023;9:2–15. https://doi.org/10.3390/jof9050582.

Article  CAS  Google Scholar 

Armentia A, Martín-Armentia S, Moral A, Montejo D, Martin-Armentia B, Sastre R, et al. Molecular study of hypersensitivity to spores in adults and children from Castile & Leon. Allergol Immunopathol. 2019;47:350–6. https://doi.org/10.1016/j.aller.2018.10.002.

Article  CAS  Google Scholar 

Twaroch TE, Curin M, Valenta R, Swoboda I. Mold allergens in respiratory allergy: From structure to therapy. AAIR. 2015;7:205–20. https://doi.org/10.4168/aair.2015.7.3.205.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crameri R, Zeller S, Glaser AG, Vilhelmsson M, Rhyner C. Cross-reactivity among fungal allergens: A clinically relevant phenomenon? Mycoses. 2009;52:99–106. https://doi.org/10.1111/j.1439-0507.2008.01644.x.

Article  CAS  PubMed  Google Scholar 

Simon-Nobbe B, Denk U, Pöll V, Rid R, Breitenbach M. The spectrum of fungal allergy. Int Arch Allergy Immunol. 2008;145:58–86. https://doi.org/10.1159/000107578.

Article  PubMed  Google Scholar 

Sevinc MS, Kumar V, Abebe M, Casley WL, Vijay HM. Isolation and characterization of a cDNA clone encoding one IgE-binding fragment of Penicillium brevicompactum. Int Arc Allergy Immunol. 2005;138:12–20. https://doi.org/10.1159/000087353.

Article  CAS  Google Scholar 

Chang C-Y, Chou H, Tam MF, Tang R-B, Lai H-Y, Shen H-D. Characterization of Enolase Allergen from Rhodotorula mucilaginosa. J of Biomed Sci. 2003;9:645–55. https://doi.org/10.1159/000067279.

Article  CAS  Google Scholar 

Baldo BA, Baker RS. Inhalant allergies to fungi: reactions to bakers’ yeast (Saccharomyces cerevisiae) and identification of bakers’ yeast enolase as an important allergen. Int Arch Allergy Immun. 1988;86:201–8. https://doi.org/10.1159/000234572.

Article  CAS  Google Scholar 

Pajno GB, Passalacqua G, Salpietro C, Vita D, Caminiti L. Looking for immunotolerance: a case of allergy to baker’s yeast (Saccharomyces cerevisiae). Ann Allergy Clin Immunol. 2005;37:271–2. https://doi.org/10.1002/9780470015902.a0000916.pub3.

Article  CAS  Google Scholar 

Jia C, Wei Y, Shi J, Zhang H, Xiao Y, Gan Z, et al. Allergenic risk assessment of enolase leaked from Saccharomyces cerevisiae under pressurization. Food Biosci. 2023. https://doi.org/10.1016/j.fbio.2023.103399.

Article  Google Scholar 

Pfeiffer S, Raith M, Pascal M, Munoz-Cano RM, San Bartolome C, Nöbauer K, et al. The emerging pathogen Paecilomyces variotiia novel and important fungal allergen source. Allergy: European Journal of Allergy and Clinical Immunology. 2022;77:1045–8. https://doi.org/10.1111/all.15176.

Article  CAS  PubMed  Google Scholar 

Pfeiffer S, Sandler P, Raith M, Pascal M, Munoz-Cano RM, San Bartolome C, et al. Identification of Ulocladium chartarum as an important indoor allergen source. Allergy: European Journal of Allergy and Clinical Immunology. 2021;76:3202–6. https://doi.org/10.1111/all.14999.

留言 (0)

沒有登入
gif