Artesunate-loaded Fe3O4 nanoparticles: A novel approach for combating 4T1 breast cancer cells in vitro and in vivo

1.     Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56(2):106–130. 
2.     Hamacher-Brady A, Stein HA, Turschner S, Toegel I, Mora R, Jennewein N, et al. Artesunate activates mitochondrial apoptosis in breast cancer cells via  iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem. 2011;286(8):6587–6601. 
3.     Michaelis M, Kleinschmidt MC, Barth S, Rothweiler F, Geiler J, Breitling R, et al. Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell  lines. Biochem Pharmacol. 2010;79(2):130–136. 
4.     Singh N, B V. Case report of a laryngeal squamous cell carcinoma treated with artesunate. Arch Oncol. 2002;10. 
5.     Tran TH, Nguyen TD, Poudel BK, Nguyen HT, Kim JO, Yong CS, et al. Development and Evaluation of Artesunate-Loaded Chitosan-Coated Lipid Nanocapsule  as a Potential Drug Delivery System Against Breast Cancer. AAPS PharmSciTech. 2015;16(6):1307–1316. 
6.     Wang Y, Han Y, Yang Y, Yang J, Guo X, Zhang J, et al. Effect of interaction of magnetic nanoparticles of Fe₃O₄ and artesunate on  apoptosis of K562 cells. Int J Nanomedicine. 2011;6:1185–1192. 
7.     Stella B, Arpicco S, Peracchia MT, Desmaële D, Hoebeke J, Renoir M, et al. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci. 2000;89(11):1452–1464. 
8.     Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential  alternatives. Angew Chem Int Ed Engl. 2010;49(36):6288–6308. 
9.     Berger J, Reist M, Mayer JM, Felt O, Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or  aggregation for biomedical applications. Eur J Pharm Biopharm  Off J  Arbeitsgemeinschaft fur Pharm Verfahrenstechnik eV. 2004;57(1):35–52. 
10.     Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer  therapy. Biomaterials. 2011;32(7):1890–1905. 
11.     Wang J, Chen B, Chen J, Cai X, Xia G, Liu R, et al. Synthesis and antitumor efficacy of daunorubicin-loaded magnetic nanoparticles. Int J Nanomedicine. 2011;6:203–211. 
12.     Chen B, Lai B, Cheng J, Xia G, Gao F, Xu W, et al. Daunorubicin-loaded magnetic nanoparticles of Fe3O4 overcome multidrug resistance  and induce apoptosis of K562-n/VCR cells in vivo. Int J Nanomedicine. 2009;4:201–208. 
13.     Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic  targeting of brain tumors. Biomaterials. 2008 Feb;29(4):487–496. 
14.     Chen D, Tang Q, Li X, Zhou X, Zang J, Xue W, et al. Biocompatibility of magnetic Fe₃O₄ nanoparticles and their cytotoxic effect on  MCF-7 cells. Int J Nanomedicine. 2012;7:4973–4982. 
15.     Dias AMM, Courteau A, Bellaye P-S, Kohli E, Oudot A, Doulain P-E, et al. Superparamagnetic Iron Oxide Nanoparticles for Immunotherapy of Cancers through  Macrophages and Magnetic Hyperthermia. Pharmaceutics. 2022;14(11):2388. 
16.     Jain KK. Role of nanobiotechnology in developing personalized medicine for cancer. Technol Cancer Res Treat. 200;4(6):645–650. 
17.     Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical  applications. Biomaterials. 2005;26(18):3995–4021. 

留言 (0)

沒有登入
gif