Noncontrast free-breathing ECG-gated 3D balanced steady-state free precession in congenital heart disease and aortopathy evaluation

Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 19(39):1890–1900. https://doi.org/10.1016/s0735-1097(02)01886-7

Article  Google Scholar 

Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L (2007) Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115:163–172. https://doi.org/10.1161/CIRCULATIONAHA.106.627224

Article  PubMed  Google Scholar 

Warnes CA, Liberthson R, Danielson GK et al (2001) Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol 37:1170–1175. https://doi.org/10.1016/s0735-1097(01)01272-4

Article  CAS  PubMed  Google Scholar 

Vogt FM, Theysohn JM, Michna D et al (2013) Contrast-enhanced time-resolved 4D MRA of congenital heart and vessel anomalies: image quality and diagnostic value compared with 3D MRA. Eur Radiol 23:2392–2404. https://doi.org/10.1007/s00330-013-2845-7

Article  PubMed  Google Scholar 

Steeden JA, Pandya B, Tann O, Muthurangu V (2015) Free breathing contrast-enhanced time-resolved magnetic resonance angiography in pediatric and adult congenital heart disease. J Cardiovasc Magn Reson 22(17):38. https://doi.org/10.1186/s12968-015-0138-9

Article  Google Scholar 

van der Stelt F, Siegerink SN, Krings GJ, Molenschot MMC, Breur JMPJ (2019) Three-dimensional rotational angiography in pediatric patients with congenital heart disease: a literature review. Pediatr Cardiol 40:257–264. https://doi.org/10.1007/s00246-019-02052-z

Article  PubMed  PubMed Central  Google Scholar 

Ntsinjana HN, Hughes ML, Taylor AM (2011) The role of cardiovascular magnetic resonance in pediatric congenital heart disease. J Cardiovasc Magn Reson 21(13):51. https://doi.org/10.1186/1532-429X-13-51

Article  Google Scholar 

Kocaoglu M, Pednekar A, Fleck RJ, Dillman JR (2024) Cardiothoracic magnetic resonance angiography. Curr Probl Diagn Radiol 53:154–165. https://doi.org/10.1067/j.cpradiol.2023.10.001

Article  PubMed  Google Scholar 

Prakash A, Powell AJ, Geva T (2010) Multimodality noninvasive imaging for assessment of congenital heart disease. Circ Cardiovasc Imaging 3:112–125. https://doi.org/10.1161/CIRCIMAGING.109.875021

Article  PubMed  Google Scholar 

Isaak A, Luetkens JA, Faron A, Endler C et al (2021) Free-breathing non-contrast flow-independent cardiovascular magnetic resonance angiography using cardiac gated, magnetization-prepared 3D Dixon method: assessment of thoracic vasculature in congenital heart disease. J Cardiovasc Magn Reson 23:91. https://doi.org/10.1186/s12968-021-00788-3

Article  PubMed  PubMed Central  Google Scholar 

Didier D, Ratib O, Beghetti M, Oberhaensli I, Friedli B (1999) Morphologic and functional evaluation of congenital heart disease by magnetic resonance imaging. J Magn Reson Imaging 10:639–655. https://doi.org/10.1002/(sici)1522-2586(199911)10:5%3c639::aid-jmri7%3e3.0.co;2-l

Article  CAS  PubMed  Google Scholar 

Chung T (2000) Assessment of cardiovascular anatomy in patients with congenital heart disease by magnetic resonance imaging. Pediatr Cardiol 21:18–26. https://doi.org/10.1007/s002469910004

Article  CAS  PubMed  Google Scholar 

Wang Y, Alkasab TK, Narin O et al (2011) Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology 260:105–111. https://doi.org/10.1148/radiol.11102340

Article  PubMed  Google Scholar 

Rozenfeld MN, Podberesky DJ (2018) Gadolinium-based contrast agents in children. Pediatr Radiol 48:1188–1196. https://doi.org/10.1007/s00247-018-4165-1

Article  PubMed  Google Scholar 

Mathur M, Jones JR, Weinreb JC (2020) Gadolinium deposition and nephrogenic systemic fibrosis: a radiologist’s primer. Radiographics 40:153–162. https://doi.org/10.1148/rg.2020190110

Article  PubMed  Google Scholar 

Wheaton AJ, Miyazaki M (2012) Non-contrast enhanced MR angiography: physical principles. J Magn Reson Imaging 36:286–304. https://doi.org/10.1002/jmri.23641

Article  PubMed  Google Scholar 

Edelman RR, Silvers RI, Thakrar KH et al (2017) Nonenhanced MR angiography of the pulmonary arteries using single-shot radial quiescent-interval slice-selective (QISS): a technical feasibility study. J Cardiovasc Magn Reson 19:48. https://doi.org/10.1186/s12968-017-0365-3

Article  PubMed  PubMed Central  Google Scholar 

Snel GJH, Hernandez LM, Slart RHJA et al (2020) Validation of thoracic aortic dimensions on ECG-triggered SSFP as alternative to contrast-enhanced MRA. Eur Radiol 30:5794–5804. https://doi.org/10.1007/s00330-020-06963-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishnam MS, Tomasian A, Deshpande V et al (2008) Noncontrast 3D steady-state free-precession magnetic resonance angiography of the whole chest using nonselective radiofrequency excitation over a large field of view: comparison with single-phase 3D contrast-enhanced magnetic resonance angiography. Invest Radiol 43:411–420. https://doi.org/10.1097/RLI.0b013e3181690179

Article  PubMed  Google Scholar 

Pennig L, Wagner A, Weiss K et al (2020) Imaging of the pulmonary vasculature in congenital heart disease without gadolinium contrast: intraindividual comparison of a novel compressed SENSE accelerated 3D modified REACT with 4D contrast-enhanced magnetic resonance angiography. J Cardiovasc Magn Reson 22:8. https://doi.org/10.1186/s12968-019-0591-y

Article  PubMed  PubMed Central  Google Scholar 

Kourtidou S, Jones MR, Moore RA et al (2019) mDixon ECG-gated 3-dimensional cardiovascular magnetic resonance angiography in patients with congenital cardiovascular disease. J Cardiovasc Magn Reson 21:52. https://doi.org/10.1186/s12968-019-0554-3

Article  PubMed  PubMed Central  Google Scholar 

Maksimović R, Dill T, Ristić AD, Seferović PM (2006) Imaging in percutaneous ablation for atrial fibrillation. Eur Radiol 16:2491–2504. https://doi.org/10.1007/s00330-006-0235-0

Article  PubMed  Google Scholar 

Krishnam MS, Tomasian A, Malik S et al (2009) Three-dimensional imaging of pulmonary veins by a novel steady-state free-precession magnetic resonance angiography technique without the use of intravenous contrast agent: initial experience. Invest Radiol 44:447–453. https://doi.org/10.1097/RLI.0b013e3181a7c6cb

Article  PubMed  Google Scholar 

Shariat M, Schantz D, Yoo SJ et al (2014) Pulmonary artery pulsatility and effect on vessel diameter assessment in magnetic resonance imaging. Eur J Radiol 83:378–383. https://doi.org/10.1016/j.ejrad.2013.09.028

Article  PubMed  Google Scholar 

Syed MA, Peters DC, Rashid H, Arai AE (2005) Pulmonary vein imaging: comparison of 3D magnetic resonance angiography with 2D cine MRI for characterizing anatomy and size. J Cardiovasc Magn Reson 7:355–360. https://doi.org/10.1081/jcmr-200053458

Article  PubMed  Google Scholar 

Hauser TH, Yeon SB, Kissinger KV, Josephson ME, Manning WJ (2006) Variation in pulmonary vein size during the cardiac cycle: implications for non-electrocardiogram-gated imaging. Am Heart J 152:974.e1–6. https://doi.org/10.1016/j.ahj.2006.05.018

Article  PubMed  Google Scholar 

Burman ED, Keegan J, Kilner PJ (2016) Pulmonary artery diameters, cross sectional areas and area changes measured by cine cardiovascular magnetic resonance in healthy volunteers. J Cardiovasc Magn Reson 3(18):12. https://doi.org/10.1186/s12968-016-0230-9

Article  Google Scholar 

Erbel R, Aboyans V, Boileau C et al (2014) 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J 35:2873–2926. https://doi.org/10.1093/eurheartj/ehu281

Article  PubMed  Google Scholar 

Sørensen TS, Körperich H, Greil GF et al (2004) Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation 110:163–169. https://doi.org/10.1161/01.CIR.0000134282.35183.AD

Article  PubMed  Google Scholar 

Heverhagen JT (2007) Noise measurement and estimation in MR imaging experiments. Radiology 245:638–639. https://doi.org/10.1148/radiol.2453062151

Article 

留言 (0)

沒有登入
gif