Dynamic functional network connectivity in children with profound bilateral congenital sensorineural hearing loss

Kiyosaki K, Chang KW (2018) Diagnosis and management of congenital sensorineural hearing loss. Curr Treat Options Pediatr 4:174–182. https://doi.org/10.1007/s40746-018-0119-y

Article  Google Scholar 

Kvestad E, Lie KK, Eskild A, Engdahl B (2014) Sensorineural hearing loss in children: the association with Apgar score. A registry-based study of 392371 children in Norway. Int J Pediatr Otorhinolaryngol 78:1940–1944. https://doi.org/10.1016/j.ijporl.2014.08.032

Article  PubMed  Google Scholar 

Lieu JEC, Kenna M, Anne S, Davidson L (2020) Hearing loss in children. JAMA 324:2195. https://doi.org/10.1001/jama.2020.17647

Article  PubMed  Google Scholar 

Sharma A, Campbell J (2011) A sensitive period for cochlear implantation in deaf children. J Matern Neonatal Med 24:151–153. https://doi.org/10.3109/14767058.2011.607614

Article  Google Scholar 

Sharma A, Campbell J, Cardon G (2015) Developmental and cross-modal plasticity in deafness: evidence from the P1 and N1 event related potentials in cochlear implanted children. Int J Psychophysiol 95:135–144

Article  PubMed  Google Scholar 

Kral A, Sharma A (2012) Developmental neuroplasticity after cochlear implantation. Trends Neurosci 35:111–122. https://doi.org/10.1016/j.tins.2011.09.004

Article  CAS  PubMed  Google Scholar 

Lebel C, Deoni S (2018) The development of brain white matter microstructure. Neuroimage 182:207–218. https://doi.org/10.1016/j.neuroimage.2017.12.097

Article  PubMed  Google Scholar 

Kral A (2013) Auditory critical periods: a review from system’s perspective. Neuroscience 247:117–133. https://doi.org/10.1016/j.neuroscience.2013.05.021

Article  CAS  PubMed  Google Scholar 

Kral A, O’Donoghue GM (2010) Profound deafness in childhood. N Engl J Med 363:1438–1450. https://doi.org/10.1056/NEJMra0911225

Article  CAS  PubMed  Google Scholar 

Feng G, Ingvalson EM, Grieco-Calub TM et al (2018) Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients. Proc Natl Acad Sci U S A 115:E1022–E1031. https://doi.org/10.1073/pnas.1717603115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Chen B, Yu Y et al (2019) Alterations of structural and functional connectivity in profound sensorineural hearing loss infants within an early sensitive period: a combined DTI and fMRI study. Dev Cogn Neurosci 38:100654. https://doi.org/10.1016/j.dcn.2019.100654

Article  PubMed  PubMed Central  Google Scholar 

Wang S, Chen B, Yu Y et al (2021) Altered resting-state functional network connectivity in profound sensorineural hearing loss infants within an early sensitive period: a group ICA study. Hum Brain Mapp 42:4314–4326. https://doi.org/10.1002/hbm.25548

Article  PubMed  PubMed Central  Google Scholar 

Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541. https://doi.org/10.1002/mrm.1910340409

Article  CAS  PubMed  Google Scholar 

Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1:13–36. https://doi.org/10.1089/brain.2011.0008

Article  PubMed  Google Scholar 

Allen EA, Damaraju E, Plis SM et al (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676. https://doi.org/10.1093/cercor/bhs352

Article  PubMed  Google Scholar 

Calhoun VD, Miller R, Pearlson G, Adali T (2014) The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84:262–274. https://doi.org/10.1016/j.neuron.2014.10.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hutchison RM, Womelsdorf T, Gati JS et al (2013) Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp 34:2154–2177. https://doi.org/10.1002/hbm.22058

Article  PubMed  Google Scholar 

Ramkiran S, Veselinović T, Dammers J et al (2023) How brain networks tic: predicting tic severity through rs-fMRI dynamics in Tourette syndrome. Hum Brain Mapp 44:4225–4238. https://doi.org/10.1002/hbm.26341

Article  PubMed  PubMed Central  Google Scholar 

Wu X, He H, Shi L et al (2019) Personality traits are related with dynamic functional connectivity in major depression disorder: a resting-state analysis. J Affect Disord 245:1032–1042. https://doi.org/10.1016/j.jad.2018.11.002

Article  PubMed  Google Scholar 

Faghiri A, Stephen JM, Wang Y et al (2018) Changing brain connectivity dynamics: from early childhood to adulthood. Hum Brain Mapp 39:1108–1117. https://doi.org/10.1002/hbm.23896

Article  PubMed  Google Scholar 

Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50:81–98. https://doi.org/10.1016/j.neuroimage.2009.12.011

Article  PubMed  Google Scholar 

Marusak HA, Calhoun VD, Brown S et al (2017) Dynamic functional connectivity of neurocognitive networks in children. Hum Brain Mapp 38:97–108. https://doi.org/10.1002/hbm.23346

Article  PubMed  Google Scholar 

Du Y, Pearlson GD, Yu Q et al (2016) Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach. Schizophr Res 170:55–65. https://doi.org/10.1016/j.schres.2015.11.021

Article  PubMed  Google Scholar 

Damaraju E, Allen EA, Belger A et al (2014) Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage Clin 5:298–308. https://doi.org/10.1016/j.nicl.2014.07.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu Z, Tu Y, Di X et al (2018) Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: an application to schizophrenia. Neuroimage 180:619–631. https://doi.org/10.1016/j.neuroimage.2017.09.035

Article  PubMed  Google Scholar 

Liu F, Wang Y, Li M et al (2017) Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic–clonic seizure. Hum Brain Mapp 38:957–973. https://doi.org/10.1002/hbm.23430

Article  PubMed  Google Scholar 

Yao Z, Shi J, Zhang Z et al (2019) Altered dynamic functional connectivity in weakly-connected state in major depressive disorder. Clin Neurophysiol 130:2096–2104. https://doi.org/10.1016/j.clinph.2019.08.009

Article  PubMed  Google Scholar 

Sendi MSE, Zendehrouh E, Ellis CA et al (2023) The link between static and dynamic brain functional network connectivity and genetic risk of Alzheimer’s disease. NeuroImage Clin 37:103363. https://doi.org/10.1016/j.nicl.2023.103363

Article  PubMed  PubMed Central  Google Scholar 

Fiorenzato E, Strafella AP, Kim J et al (2019) Dynamic functional connectivity changes associated with dementia in Parkinson’s disease. Brain 142:2860–2872. https://doi.org/10.1093/brain/awz192

Article  PubMed  PubMed Central  Google Scholar 

Kim J, Criaud M, Cho SS et al (2017) Abnormal intrinsic brain functional network dynamics in Parkinson’s disease. Brain 140:2955–2967. https://doi.org/10.1093/brain/awx233

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif