Barbaro RP, MacLaren G, Boonstra PS, Combes A, Agerstrand C, Annich G, Diaz R, Fan E, Hryniewicz K, Lorusso R, Paden ML, Stead CM, Swol J, Iwashyna TJ, Slutsky AS, Brodie D, for the Extracorporeal Life Support Organization. Extracorporeal membrane oxygenation for COVID-19: evolving outcomes from the International Extracorporeal Life Support Organization Registry. Lancet. 2021;398:1230–8. https://doi.org/10.1016/S0140-6736(21)01960-7.
Article CAS PubMed PubMed Central Google Scholar
Ogura T, Oshimo S, Liu K, Iwashita Y, Hashimoto S, Takeda S. Establishment of a disaster management-like system for COVID-19 patients requiring veno-venous extracorporeal membrane oxygenation in Japan. Membranes. 2021;11:625. https://doi.org/10.3390/membranes11080625.
Article CAS PubMed PubMed Central Google Scholar
Fukuda M, Tanaka R, Sadano K, Tokumine A, Mori T, Saomoto H, Sakai K. Insights into gradient and anisotropic pore structures of Capiox® gas exchange membranes for ECMO: theoretically verifying SARS-CoV-2 permeability. Membranes. 2022;12:314. https://doi.org/10.3390/membranes12030314.
Article CAS PubMed PubMed Central Google Scholar
Ogawa T, Uemura T, Matsuda W, Sato M, Ishizuka K, Fukaya T, Kinoshita N, Nakamoto T, Ohmagari N, Katano H, Suzuki T, Hosaka S. SARS-CoV-2 leakage from the gas outlet port during extracorporeal membrane oxygenation for COVID-19. ASAIO J. 2021;67:511–6. https://doi.org/10.1097/MAT.0000000000001402.
Article CAS PubMed PubMed Central Google Scholar
Fukuda M. Evolutions of extracorporeal membrane oxygenator (ECMO): perspectives for advanced hollow fiber membrane. J Artif Organs. 2024;27:1–6. https://doi.org/10.1007/s10047-023-01389-w.
Article CAS PubMed Google Scholar
Wang Y, Liu Y, Han Q, Lin H, Liu F. A novel poly (4-methyl-1-pentene)/polypropylene (PMP/PP) thin film composite (TFC) artificial lung membrane for enhanced gas transport and excellent hemo-compatibility. J Membr Sci. 2022;649:120359. https://doi.org/10.1016/j.memsci.2022.120359.
Feng Y, Wang Q, Zhi L, Sun S, Zhao C. Anticoagulant biomimetic consecutive gas exchange network for advanced artificial lung membrane. J Membr Sci. 2022;653:1205029. https://doi.org/10.1016/j.memsci.2022.120502.
Zhang T-Q, Jia Z-Q, Peng W, Li S, Wen J. Preparation of 4-methyl-1-pentene membranes via non-solvent induced phase separation (NIPS). Eur Polym J. 2022;178:111480. https://doi.org/10.1016/j.eurpolymj.2022.111480.
Sheng D, Zhang L, Jia H, Guo B, Zhang X, Li Y. Phosphorylcholine/heparin composite coatings on artificial lung membrane for enhanced hemo-compatibility. Langmuir. 2023;653:1205029. https://doi.org/10.1021/acs.langmuir.3c00945.
Feng Y, Wang Q, Sun S, Zhao W, Zhao C. Advanced hemocompatible polyethersulfone composite artificial lung membrane with efficient CO2/O2 exchange channel constructed by modified carbon nanotubes network. J Mater Sci Technol. 2023;160:181–93. https://doi.org/10.1016/j.jmst.2023.02.060.
He T, He J, Wang Z, Cui Z. Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO). Adv Compos Hybrid Mater. 2021;4:847–64. https://doi.org/10.1007/s42114-021-00244-x.
Article CAS PubMed PubMed Central Google Scholar
Barbaro RP, MacLaren G, Boonstra PS, Chen D, Li J, Hu H, Zhong X, Wang Y, Wang Z, Cui Z. Extracorporeal membrane oxygenator (ECMO): history, preparation, modification and mass transfer. Chin J Chem Eng. 2022;49:46–75.
Tang Y, Zhang F, Wu F, Wang L, Feng A, Yu L, Wu H, Lin Y, Wang X. A novel tunable polypropylene hollow fiber membrane with gradient structure for extracorporeal membrane oxygenation applications. J Membr Sci. 2024;693:122325. https://doi.org/10.1016/j.memsci.2023.120502.
Duy Nguyen BT, Nguyen Thi HY, Nguyen Thi BP, Kang D-K, Kim JF. The roles of membrane technology in artificial organs: current challenges and perspectives. Membranes. 2021;11:239. https://doi.org/10.3390/membranes11040239.
Article CAS PubMed PubMed Central Google Scholar
Fukuda M, Furuya T, Sadano K, Tokumine A, Mori T, Saomoto H, Sakai K. Electron microscopic confirmation of anisotropic pore characteristics for ECMO membranes theoretically validating the risk of SARS-CoV-2 permeation. Membranes. 2021;11:529. https://doi.org/10.3390/membranes11070529.
Article CAS PubMed PubMed Central Google Scholar
Fukuda M, Yoshimoto H, Saomoto H, Sakai K. Validity of three-dimensional tortuous pore structure and fouling of hemoconcentration capillary membrane using tortuous pore diffusion model and scanning probe microscopy. Membranes. 2020;10:315. https://doi.org/10.3390/membranes10110315.
Article CAS PubMed PubMed Central Google Scholar
Hayama M, Kohori F, Sakai K. AFM observation of small surface pores of hollow fiber dialysis membrane using highly sharpened probe. J Membr Sci. 2002;197:243–9.
Yamazaki K, Matsuda M, Yamamoto K, Yakushiji T, Sakai K. Internal and surface structure characterization of cellulose triacetate hollow fiber dialysis membranes. J Membr Sci. 2011;368:34–40. https://doi.org/10.1016/j.memsci.2010.11.008.
Fukuda M, Saomoto H, Mori T, Yoshimoto H, Kusumi R, Sakai K. Impact of three-dimensional tortuous pore structure on polyethersulfone membrane morphology and mass transfer properties from a manufacturing perspective. J Artif Organs. 2020;23:171–9. https://doi.org/10.1007/s10047-019-01144-0.
Article CAS PubMed Google Scholar
Alqaheem Y, Alomair AA. Microscopy and spectroscopy techniques for characterization of polymeric membranes. Membranes. 2020;10:33. https://doi.org/10.3390/membranes10020033.
Article CAS PubMed PubMed Central Google Scholar
Dinelli F, Brucale M, Valle F, Ascoli C, Samorì B, Sartore M, Adami M, Galletti R, Prato S, Troian B, Albonetti C. Probing Italy: a scanning probe microscopy storyline. Micro. 2023;3:549–65. https://doi.org/10.3390/mico3020037.
Fukuda M, Sakai K. 3D porous structure imaging of membranes for medical devices using scanning probe microscopy and electron microscopy—from membrane science points of view. J Artif Organs. 2024. https://doi.org/10.1007/s10047-023-01431-x.
Ren H, Zhang X, Li Y, Zhang D, Huang F, Zhang Z. Preparation of cross-sectional membrane samples for scanning electron microscopy characterizations using a new frozen section technique. Membranes. 2023;13:634. https://doi.org/10.3390/membranes13070634.
Article CAS PubMed PubMed Central Google Scholar
Roberge H, Moreau P, Couallier E, Abella P. Determination of the key structural factors affecting permeability and selectivity of PAN and PES polymeric filtration membranes using 3D FIB/SEM. J Membr Sci. 2022;653:120530. https://doi.org/10.1016/j.memsci.2022.120530.
Kaneko A, Takasu H. Introduction of ion milling system and its application (in Japanese). J Surf Finish Soc Jpn. 2015;66:581–5. https://doi.org/10.4139/sfj.66.581.
Getinge Group Japan K.K. Package insert (assisting circulation system: HLS SET Advanced-LT, 30200BZX00270000), 22 May 2023
Terumo Corporation. https://www.terumo.co.jp/medical/equipment/me171.html. Accessed 1 Nov 2023
Tatsumi E, Taenaka Y, Nakatani T, Akagi H, Seki H, Yagura A, Sasaki E, Goto M, Nakamaru H, Takano H. A VAD and novel high performance compact oxygenator for long-term ECMO with local anticoagulation. ASAIO J. 1990;36:M480–3.
Tanaka M, Motomura T, Kawada M, Anzai T, Kasori Y, Shiroya T, Shimura K, Onishi M, Mochizuki A. Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)-relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials. 2000;21:1471–81.
Article CAS PubMed Google Scholar
Lund LW, Hattler BG, Federspiel WJ. Is condensation the cause of plasma leakage in microporous hollow fiber membrane oxygenators. J Membr Sci. 1998;147:87–93.
留言 (0)