DeFronzo R, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019. https://doi.org/10.1038/nrdp.2015.19.
Elsayed NA, Aleppo G, Aroda VR, et al. Pharmacologic approaches to glycemic treatment: Standards of care in diabetes—2023. Diabetes Care. 2023;46(supp):S140–57. https://doi.org/10.2337/dc23-S009.
Article PubMed CAS Google Scholar
Lea-Henry TN, Carland JE, Stocker SL, Sevastos J, Roberts DM. Clinical pharmacokinetics in kidney disease. Clin J Am Soc Nephrol. 2018;13(7):1085–95. https://doi.org/10.2215/CJN.00340118.
Article PubMed PubMed Central CAS Google Scholar
Winocour PH. Diabetes and chronic kidney disease: an increasingly common multi-morbid disease in need of a paradigm shift in care. Diab Med. 2018;35(3):300. https://doi.org/10.1111/dme.13564.
Koye DN, Magliano DJ, Nelson RG, Pavkov ME. The global epidemiology of diabetes and kidney disease. Adv Chronic Kidney Dis. 2018;25(2):121–32. https://doi.org/10.1053/j.ackd.2017.10.011.
Article PubMed PubMed Central Google Scholar
Rashid M, Samadi S, Sevil M, et al. Simulation software for assessment of nonlinear and adaptive multivariable control algorithms: Glucose–insulin dynamics in Type 1 diabetes. Comput Chem Eng. 2019;130:106565. https://doi.org/10.1016/j.compchemeng.2019.106565.
Article PubMed PubMed Central CAS Google Scholar
Fritzen K, Heinemann L, Schnell O. Modeling of diabetes and its clinical impact. J Diabetes Sci Technol. 2018;12(5):976–84. https://doi.org/10.1177/1932296818785642.
Article PubMed PubMed Central Google Scholar
Pradhan S, Duffull SB, Wilson LC, et al. Does the intact nephron hypothesis provide a reasonable model for metformin dosing in chronic kidney disease? Br J Clin Pharmacol. 2021;87(12):4868–76. https://doi.org/10.1111/bcp.14919.
Article PubMed CAS Google Scholar
Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46. https://doi.org/10.1056/nejmoa2024816.
Article PubMed CAS Google Scholar
Maurer TS, Ghosh A, Haddish-Berhane N, et al. Pharmacodynamic model of sodium-glucose transporter 2 (SGLT2) inhibition: Implications for quantitative translational pharmacology. AAPS Journal. 2011;13(4):576–84. https://doi.org/10.1208/s12248-011-9297-2.
Article PubMed PubMed Central CAS Google Scholar
Duong JK, de Winter W, Choy S, et al. The variability in beta-cell function in placebo-treated subjects with type 2 diabetes: application of the weight-HbA1c-insulin-glucose (WHIG) model. Br J Clin Pharmacol. 2017;83(3):487–97. https://doi.org/10.1111/bcp.13144.
Article PubMed CAS Google Scholar
Duong JK, Kroonen MYAM, Kumar SS, et al. A dosing algorithm for metformin based on the relationships between exposure and renal clearance of metformin in patients with varying degrees of kidney function. Eur J Clin Pharmacol. 2017;73(8):981–90. https://doi.org/10.1007/s00228-017-2251-1.
Article PubMed CAS Google Scholar
Jones HM, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometrics Syst Pharmacol. 2013;2(8):e63. https://doi.org/10.1038/psp.2013.41.
Article PubMed PubMed Central CAS Google Scholar
Willmann S, Lippert J, Sevestre M, Solodenko J, Fois F, Schmitt W. PK-Sim®: A physiologically based pharmacokinetic “whole-body” model. Drug Discov Today Biosilico. 2003;1(4):121–4. https://doi.org/10.1016/s1478-5382(03)02342-4.
Verbeeck RK, Musuamba FT. Pharmacokinetics and dosage adjustment in patients with renal dysfunction. Eur J Clin Pharmacol. 2009;65(8):757–73. https://doi.org/10.1007/s00228-009-0678-8.
Article PubMed CAS Google Scholar
Rosenbaum S. Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations. John Wiley & Sons, Inc; 2017.
Wang K, Kestenbaum B. Proximal tubular secretory clearance: a neglected partner of kidney function. Clin J Am Soc Nephrol. 2018;13(8):1291–6. https://doi.org/10.2215/CJN.12001017.
Article PubMed PubMed Central CAS Google Scholar
Wright DFB, Duffull SB. A general empirical model for renal drug handling in pharmacokinetic analyses. Br J Clin Pharmacol. 2017;83(9):1869–72. https://doi.org/10.1111/bcp.13306.
Article PubMed PubMed Central Google Scholar
Huang W, Isoherranen N. Novel mechanistic PBPK model to predict renal clearance in varying stages of CKD by incorporating tubular adaptation and dynamic passive reabsorption. CPT Pharmacometrics Syst Pharmacol. 2020;9(10):571–83. https://doi.org/10.1002/psp4.12553.
Article PubMed PubMed Central CAS Google Scholar
Kasichayanula S, Liu X, Pe Benito M, et al. The influence of kidney function on dapagliflozin exposure, metabolism and pharmacodynamics in healthy subjects and in patients with type 2 diabetes mellitus. Br J Clin Pharmacol. 2013;76(3):432–44. https://doi.org/10.1111/bcp.12056.
Article PubMed CAS Google Scholar
Murton M, Goff-Leggett D, Bobrowska A, Garcia Sanchez JJ, James G, Wittbrodt E, Nolan S, Sörstadius E, Pecoits-Filho R, Tuttle K. Burden of chronic kidney disease by KDIGO categories of glomerular filtration rate and albuminuria: A systematic review. Adv Ther. 2021;38:180–200. https://doi.org/10.1007/s12325.
Chapron A, Shen DD, Kestenbaum BR, Robinson-Cohen C, Himmelfarb J, Yeung CK. Does secretory clearance follow glomerular filtration rate in chronic kidney diseases? Reconsidering the intact nephron hypothesis. Clin Transl Sci. 2017;10(5):395–403. https://doi.org/10.1111/cts.12481.
Article PubMed PubMed Central CAS Google Scholar
Risso MA, Sallustio S, Sueiro V, Bertoni V, Gonzalez-Torres H, Musso CG. The importance of tubular function in chronic kidney disease. Int J Nephrol Renovasc Dis. 2019;12:257–62. https://doi.org/10.2147/IJNRD.S216673.
Article PubMed PubMed Central CAS Google Scholar
Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81–98. https://doi.org/10.2165/11534750-000000000-00000.
Article PubMed CAS Google Scholar
Kasichayanula S, Liu X, LaCreta F, Griffen SC, Boulton DW. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014;53(1):17–27. https://doi.org/10.1007/s40262-013-0104-3.
Article PubMed CAS Google Scholar
Bristol-Myers Squibb Company. Glucophage. Prescribing Information: Published online; 2017.
AstraZeneca Pharmaceuticals LP. Farxiga (dapagliflozin) Tablets. Prescribing Information: Published online; 2020.
Schwartz SC. On the estimation of gaussian convolution probability density. SIAM J Appl Math. 1969;17(2):447–53. https://doi.org/10.1137/0117043.
Andronov A, Spiridovska N, Santalova D. On a parametric estimation for a convolution of exponential densities. In: Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications. 2023:181–195. https://doi.org/10.1007/978-3-031-40055-1_9
Sprott DA. Estimating the parameters of a convolution by maximum likelihood. J Am Stat Assoc. 1983;78(382):457. https://doi.org/10.2307/2288657.
Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, Median, Range and/or interquartile range. 14, 2014. http://www.biomedcentral.com/1471-2288/14/135
Slatopolsky E. The intact nephron hypothesis: The concept and its implications for phosphate management in CKD-related mineral and bone disorder. Kidney Int. 2011;79(SUPPL. 121). https://doi.org/10.1038/ki.2011.23
Tan ML, Yoshida K, Zhao P, et al. Effect of chronic kidney disease on nonrenal elimination pathways: A systematic assessment of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and OATP. Clin Pharmacol Ther. 2018;103(5):854–67. https://doi.org/10.1002/cpt.807.
留言 (0)