Modeling Metformin and Dapagliflozin Pharmacokinetics in Chronic Kidney Disease

DeFronzo R, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019. https://doi.org/10.1038/nrdp.2015.19.

Elsayed NA, Aleppo G, Aroda VR, et al. Pharmacologic approaches to glycemic treatment: Standards of care in diabetes—2023. Diabetes Care. 2023;46(supp):S140–57. https://doi.org/10.2337/dc23-S009.

Article  PubMed  CAS  Google Scholar 

Lea-Henry TN, Carland JE, Stocker SL, Sevastos J, Roberts DM. Clinical pharmacokinetics in kidney disease. Clin J Am Soc Nephrol. 2018;13(7):1085–95. https://doi.org/10.2215/CJN.00340118.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Winocour PH. Diabetes and chronic kidney disease: an increasingly common multi-morbid disease in need of a paradigm shift in care. Diab Med. 2018;35(3):300. https://doi.org/10.1111/dme.13564.

Article  CAS  Google Scholar 

Koye DN, Magliano DJ, Nelson RG, Pavkov ME. The global epidemiology of diabetes and kidney disease. Adv Chronic Kidney Dis. 2018;25(2):121–32. https://doi.org/10.1053/j.ackd.2017.10.011.

Article  PubMed  PubMed Central  Google Scholar 

Rashid M, Samadi S, Sevil M, et al. Simulation software for assessment of nonlinear and adaptive multivariable control algorithms: Glucose–insulin dynamics in Type 1 diabetes. Comput Chem Eng. 2019;130:106565. https://doi.org/10.1016/j.compchemeng.2019.106565.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fritzen K, Heinemann L, Schnell O. Modeling of diabetes and its clinical impact. J Diabetes Sci Technol. 2018;12(5):976–84. https://doi.org/10.1177/1932296818785642.

Article  PubMed  PubMed Central  Google Scholar 

Pradhan S, Duffull SB, Wilson LC, et al. Does the intact nephron hypothesis provide a reasonable model for metformin dosing in chronic kidney disease? Br J Clin Pharmacol. 2021;87(12):4868–76. https://doi.org/10.1111/bcp.14919.

Article  PubMed  CAS  Google Scholar 

Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46. https://doi.org/10.1056/nejmoa2024816.

Article  PubMed  CAS  Google Scholar 

Maurer TS, Ghosh A, Haddish-Berhane N, et al. Pharmacodynamic model of sodium-glucose transporter 2 (SGLT2) inhibition: Implications for quantitative translational pharmacology. AAPS Journal. 2011;13(4):576–84. https://doi.org/10.1208/s12248-011-9297-2.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Duong JK, de Winter W, Choy S, et al. The variability in beta-cell function in placebo-treated subjects with type 2 diabetes: application of the weight-HbA1c-insulin-glucose (WHIG) model. Br J Clin Pharmacol. 2017;83(3):487–97. https://doi.org/10.1111/bcp.13144.

Article  PubMed  CAS  Google Scholar 

Duong JK, Kroonen MYAM, Kumar SS, et al. A dosing algorithm for metformin based on the relationships between exposure and renal clearance of metformin in patients with varying degrees of kidney function. Eur J Clin Pharmacol. 2017;73(8):981–90. https://doi.org/10.1007/s00228-017-2251-1.

Article  PubMed  CAS  Google Scholar 

Jones HM, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometrics Syst Pharmacol. 2013;2(8):e63. https://doi.org/10.1038/psp.2013.41.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Willmann S, Lippert J, Sevestre M, Solodenko J, Fois F, Schmitt W. PK-Sim®: A physiologically based pharmacokinetic “whole-body” model. Drug Discov Today Biosilico. 2003;1(4):121–4. https://doi.org/10.1016/s1478-5382(03)02342-4.

Article  CAS  Google Scholar 

Verbeeck RK, Musuamba FT. Pharmacokinetics and dosage adjustment in patients with renal dysfunction. Eur J Clin Pharmacol. 2009;65(8):757–73. https://doi.org/10.1007/s00228-009-0678-8.

Article  PubMed  CAS  Google Scholar 

Rosenbaum S. Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations. John Wiley & Sons, Inc; 2017.

Wang K, Kestenbaum B. Proximal tubular secretory clearance: a neglected partner of kidney function. Clin J Am Soc Nephrol. 2018;13(8):1291–6. https://doi.org/10.2215/CJN.12001017.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wright DFB, Duffull SB. A general empirical model for renal drug handling in pharmacokinetic analyses. Br J Clin Pharmacol. 2017;83(9):1869–72. https://doi.org/10.1111/bcp.13306.

Article  PubMed  PubMed Central  Google Scholar 

Huang W, Isoherranen N. Novel mechanistic PBPK model to predict renal clearance in varying stages of CKD by incorporating tubular adaptation and dynamic passive reabsorption. CPT Pharmacometrics Syst Pharmacol. 2020;9(10):571–83. https://doi.org/10.1002/psp4.12553.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kasichayanula S, Liu X, Pe Benito M, et al. The influence of kidney function on dapagliflozin exposure, metabolism and pharmacodynamics in healthy subjects and in patients with type 2 diabetes mellitus. Br J Clin Pharmacol. 2013;76(3):432–44. https://doi.org/10.1111/bcp.12056.

Article  PubMed  CAS  Google Scholar 

Murton M, Goff-Leggett D, Bobrowska A, Garcia Sanchez JJ, James G, Wittbrodt E, Nolan S, Sörstadius E, Pecoits-Filho R, Tuttle K. Burden of chronic kidney disease by KDIGO categories of glomerular filtration rate and albuminuria: A systematic review. Adv Ther. 2021;38:180–200. https://doi.org/10.1007/s12325.

Article  PubMed  Google Scholar 

Chapron A, Shen DD, Kestenbaum BR, Robinson-Cohen C, Himmelfarb J, Yeung CK. Does secretory clearance follow glomerular filtration rate in chronic kidney diseases? Reconsidering the intact nephron hypothesis. Clin Transl Sci. 2017;10(5):395–403. https://doi.org/10.1111/cts.12481.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Risso MA, Sallustio S, Sueiro V, Bertoni V, Gonzalez-Torres H, Musso CG. The importance of tubular function in chronic kidney disease. Int J Nephrol Renovasc Dis. 2019;12:257–62. https://doi.org/10.2147/IJNRD.S216673.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81–98. https://doi.org/10.2165/11534750-000000000-00000.

Article  PubMed  CAS  Google Scholar 

Kasichayanula S, Liu X, LaCreta F, Griffen SC, Boulton DW. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014;53(1):17–27. https://doi.org/10.1007/s40262-013-0104-3.

Article  PubMed  CAS  Google Scholar 

Bristol-Myers Squibb Company. Glucophage. Prescribing Information: Published online; 2017.

Google Scholar 

AstraZeneca Pharmaceuticals LP. Farxiga (dapagliflozin) Tablets. Prescribing Information: Published online; 2020.

Google Scholar 

Schwartz SC. On the estimation of gaussian convolution probability density. SIAM J Appl Math. 1969;17(2):447–53. https://doi.org/10.1137/0117043.

Article  Google Scholar 

Andronov A, Spiridovska N, Santalova D. On a parametric estimation for a convolution of exponential densities. In: Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications. 2023:181–195. https://doi.org/10.1007/978-3-031-40055-1_9

Sprott DA. Estimating the parameters of a convolution by maximum likelihood. J Am Stat Assoc. 1983;78(382):457. https://doi.org/10.2307/2288657.

Article  Google Scholar 

Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, Median, Range and/or interquartile range. 14, 2014. http://www.biomedcentral.com/1471-2288/14/135

Slatopolsky E. The intact nephron hypothesis: The concept and its implications for phosphate management in CKD-related mineral and bone disorder. Kidney Int. 2011;79(SUPPL. 121). https://doi.org/10.1038/ki.2011.23

Tan ML, Yoshida K, Zhao P, et al. Effect of chronic kidney disease on nonrenal elimination pathways: A systematic assessment of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and OATP. Clin Pharmacol Ther. 2018;103(5):854–67. https://doi.org/10.1002/cpt.807.

Article 

留言 (0)

沒有登入
gif