Chronic adaptive deep brain stimulation versus conventional stimulation in Parkinson’s disease: a blinded randomized feasibility trial

Lozano, A. M. et al. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15, 148–160 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Neumann, W. -J., Gilron, R., Little, S. & Tinkhauser, G. Adaptive deep brain stimulation: from experimental evidence toward practical implementation. Mov. Disord. https://doi.org/10.1002/mds.29415 (2023).

Marceglia, S. et al. Deep brain stimulation: is it time to change gears by closing the loop? J. Neural Eng. 18, 061001 (2021).

Article  Google Scholar 

Stanslaski, S. et al. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 410–421 (2012).

Article  PubMed  Google Scholar 

Stanslaski, S. et al. A chronically implantable neural coprocessor for investigating the treatment of neurological disorders. IEEE Trans. Biomed. Circuits Syst. 12, 1230–1245 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Thenaisie, Y. et al. Towards adaptive deep brain stimulation: clinical and technical notes on a novel commercial device for chronic brain sensing. J. Neural Eng. 18, 042002 (2021).

Article  Google Scholar 

Starr, P. A. Totally implantable bidirectional neural prostheses: a flexible platform for innovation in neuromodulation. Front. Neurosci. 12, 619 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Nakajima, A. et al. Case report: chronic adaptive deep brain stimulation personalizing therapy based on Parkinsonian state. Front. Hum. Neurosci. 15, 702961 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Gilron, R. et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat. Biotechnol. 39, 1078–1085 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Little, S. & Brown, P. Debugging adaptive deep brain stimulation for Parkinson’s disease. Mov. Disord. 35, 555–561 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Wilkins, K. B., Melbourne, J. A., Akella, P. & Bronte-Stewart, H. M. Unraveling the complexities of programming neural adaptive deep brain stimulation in Parkinson’s disease. Front. Hum. Neurosci. 17, 1310393 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Ansó, J. et al. Concurrent stimulation and sensing in bi-directional brain interfaces: a multi-site translational experience. J. Neural Eng. 19, 026025 (2022).

Article  Google Scholar 

Ascherio, A. & Schwarzschild, M. A. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 15, 1257–1272 (2016).

Article  PubMed  Google Scholar 

Vitek, J. L. et al. Subthalamic nucleus deep brain stimulation with a multiple independent constant current-controlled device in Parkinson’s disease (INTREPID): a multicentre, double-blind, randomised, sham-controlled study. Lancet Neurol. 19, 491–501 (2020).

Article  CAS  PubMed  Google Scholar 

Okun, M. S. et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. Lancet Neurol. 11, 140–149 (2012).

Article  PubMed  Google Scholar 

Weaver, F. M. et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 301, 63–73 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deuschl, G. et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 355, 896–908 (2006).

Article  CAS  PubMed  Google Scholar 

Follett, K. A. et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 362, 2077–2091 (2010).

Article  CAS  PubMed  Google Scholar 

Odekerken, V. J. et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 12, 37–44 (2013).

Article  PubMed  Google Scholar 

Bronte-Stewart, H. et al. Adaptive DBS Algorithm for Personalized Therapy in Parkinson’s Disease: ADAPT-PD clinical trial methodology and early data (P1-11.002). Neurology https://doi.org/10.1212/WNL.0000000000203099 (2023).

Marceglia, S. et al. Double-blind cross-over pilot trial protocol to evaluate the safety and preliminary efficacy of long-term adaptive deep brain stimulation in patients with Parkinson’s disease. BMJ Open 12, e049955 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Kühn, A. A., Kupsch, A., Schneider, G.-H. & Brown, P. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 23, 1956–1960 (2006).

Article  PubMed  Google Scholar 

Kühn, A. A. et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J. Neurosci. 28, 6165–6173 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Little, S. et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74, 449–457 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Velisar, A. et al. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimul. 12, 868–876 (2019).

Article  CAS  PubMed  Google Scholar 

Bocci, T. et al. Eight-hours conventional versus adaptive deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. NPJ Park. Dis. 7, 88 (2021).

Article  CAS  Google Scholar 

Tinkhauser, G. et al. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain J. Neurol. 140, 1053–1067 (2017).

Article  Google Scholar 

Bronstein, J. M. et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch. Neurol. 68, 165 (2011).

Article  PubMed  Google Scholar 

Swann, N. C. et al. Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s disease. J. Neurosci. 36, 6445–6458 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swann, N. C. et al. Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J. Neural Eng. 15, 046006 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Bove, F., Genovese, D. & Moro, E. Developments in the mechanistic understanding and clinical application of deep brain stimulation for Parkinson’s disease. Expert Rev. Neurother. 22, 789–803 (2022).

Article  CAS  PubMed  Google Scholar 

Wiest, C. et al. Finely-tuned gamma oscillations: spectral characteristics and links to dyskinesia. Exp. Neurol. 351, 113999 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sermon, J. J. et al. Sub-harmonic entrainment of cortical gamma oscillations to deep brain stimulation in Parkinson’s disease: model based predictions and validation in three human subjects. Brain Stimul. 16, 1412–1424 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Olaru, M. et al. Motor network gamma oscillations in chronic home recordings predict dyskinesia in Parkinson’s disease. Brain J. Neurol. https://doi.org/10.1093/brain/awae004 (2024).

Herdman, M. et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 20, 1727–1736 (2011).

Article  CAS 

留言 (0)

沒有登入
gif