Kantarjian, H. Acute myeloid leukemia—major progress over four decades and glimpses into the future. Am. J. Hematol. 91, 131–145 (2016).
Short, N. J., Rytting, M. E. & Cortes, J. E. Acute myeloid leukaemia. Lancet 392, 593–606 (2018).
Article PubMed PubMed Central Google Scholar
DeWolf, S. & Tallman, M. S. How I treat relapsed or refractory AML. Blood 136, 1023–1032 (2020).
Article PubMed PubMed Central Google Scholar
Ganzel, C. et al. Very poor long-term survival in past and more recent studies for relapsed AML patients: the ECOG-ACRIN experience. Am. J. Hematol. 93, 1074–1081 (2018).
Article PubMed PubMed Central Google Scholar
Perl, A. E. et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N. Engl. J. Med. 381, 1728–1740 (2019).
Article CAS PubMed Google Scholar
Frey, N. V. et al. Optimizing chimeric antigen receptor T-cell therapy for adults with acute lymphoblastic leukemia. J. Clin. Oncol. 38, 415–422 (2020).
Article CAS PubMed Google Scholar
Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).
Article CAS PubMed PubMed Central Google Scholar
Pasquini, M. C. et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 4, 5414–5424 (2020).
Article CAS PubMed PubMed Central Google Scholar
Shah, B. D. et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 398, 491–502 (2021).
Article CAS PubMed Google Scholar
Epperly, R., Giordani, V. M., Mikkilineni, L. & Shah, N. N. Early and late toxicities of chimeric antigen receptor T-cells. Hematol. Oncol. Clin. North Am. 37, 1169–1188 (2023).
Bendall, L. J., Daniel, A., Kortlepel, K. & Gottlieb, D. J. Bone marrow adherent layers inhibit apoptosis of acute myeloid leukemia cells. Exp. Hematol. 22, 1252–1260 (1994).
Garrido, S. M., Appelbaum, F. R., Willman, C. L. & Banker, D. E. Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). Exp. Hematol. 29, 448–457 (2001).
Article CAS PubMed Google Scholar
Bruner et al. Adaptation to TKI treatment reactivates ERK signaling in tyrosine kinase-driven leukemias and other malignancies. Cancer Res. 77, 5554–5563 (2017).
Article CAS PubMed PubMed Central Google Scholar
Sung, P. J., Sugita, M., Koblish, H., Perl, A. E. & Carroll, M. Hematopoietic cytokines mediate resistance to targeted therapy in FLT3-ITD acute myeloid leukemia. Blood Adv. 3, 1061–1072 (2019).
Article CAS PubMed PubMed Central Google Scholar
Yang, X., Sexauer, A. & Levis, M. Bone marrow stroma-mediated resistance to FLT3 inhibitors in FLT3-ITD AML is mediated by persistent activation of extracellular regulated kinase. Br. J. Haematol. 164, 61–72 (2014).
Article CAS PubMed Google Scholar
Lehtonen, A., Matikainen, S., Miettinen, M. & Julkunen, I. Granulocyte–macrophage colony-stimulating factor (GM-CSF)-induced STAT5 activation and target-gene expression during human monocyte/macrophage differentiation. J. Leukoc. Biol. 71, 511–519 (2002).
Article CAS PubMed Google Scholar
Liao, Z. et al. Structure-based screen identifies a potent small molecule inhibitor of Stat5a/b with therapeutic potential for prostate cancer and chronic myeloid leukemia. Mol. Cancer Ther. 14, 1777–1793 (2015).
Article CAS PubMed PubMed Central Google Scholar
Okada, K. et al. FLT3-ITD induces expression of Pim kinases through STAT5 to confer resistance to the PI3K/Akt pathway inhibitors on leukemic cells by enhancing the mTORC1/Mcl-1 pathway. Oncotarget 9, 8870–8886 (2018).
Wang, Q. S. et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol. Ther. 23, 184–191 (2015).
Article CAS PubMed Google Scholar
Yao, S. et al. Donor-derived CD123-targeted CAR T cell serves as a RIC regimen for haploidentical transplantation in a patient with FUS-ERG+ AML. Front. Oncol. 9, 1358 (2019).
Article PubMed PubMed Central Google Scholar
Lamble, A. J. et al. CD123 expression is associated with high-risk disease characteristics in childhood acute myeloid leukemia: a report from the Children’s Oncology Group. J. Clin. Oncol. 40, 252–261 (2022).
Article CAS PubMed Google Scholar
Vergez, F. et al. High levels of CD34+CD38low/−CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study. Haematologica 96, 1792–1798 (2011).
Article CAS PubMed PubMed Central Google Scholar
Gill, S. et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 123, 2343–2354 (2014).
Article CAS PubMed PubMed Central Google Scholar
Mardiros, A. et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 122, 3138–3148 (2013).
Article CAS PubMed PubMed Central Google Scholar
Ruella, M. et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J. Clin. Invest. 126, 3814–3826 (2016).
Article PubMed PubMed Central Google Scholar
Faderl, S. et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces antiapoptotic and proapoptotic signals in acute myeloid leukemia. Blood 102, 630–637 (2003).
Article CAS PubMed Google Scholar
Krevvata, M. et al. Cytokines increase engraftment of human acute myeloid leukemia cells in immunocompromised mice but not engraftment of human myelodysplastic syndrome cells. Haematologica 103, 959–971 (2018).
Article CAS PubMed PubMed Central Google Scholar
Dohner, H. et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 140, 1345–1377 (2022).
Bradbury, D., Zhu, Y. M. & Russell, N. Regulation of Bcl-2 expression and apoptosis in acute myeloblastic leukaemia cells by granulocyte-macrophage colony-stimulating factor. Leukemia 8, 786–791 (1994).
Dumas, P. Y. et al. Hematopoietic niche drives FLT3-ITD acute myeloid leukemia resistance to quizartinib via STAT5-and hypoxia-dependent upregulation of AXL. Haematologica 104, 2017–2027 (2019).
留言 (0)