Kawahata I, Fukunaga K (2023) Protein kinases and neurodegenerative diseases. Int J Mol Sci. https://doi.org/10.3390/ijms24065574
Article PubMed PubMed Central Google Scholar
Olson HE, Demarest ST, Pestana-Knight EM, Swanson LC, Iqbal S, Lal D et al (2019) Cyclin-dependent kinase-like 5 deficiency disorder: clinical review. Pediatr Neurol 97:18–25. https://doi.org/10.1016/j.pediatrneurol.2019.02.015
Article PubMed PubMed Central Google Scholar
Weaving LS, Christodoulou J, Williamson SL, Friend KL, McKenzie OL, Archer H et al (2004) Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet 75(6):1079–1093. https://doi.org/10.1086/426462
Article CAS PubMed PubMed Central Google Scholar
Tao J, Van Esch H, Hagedorn-Greiwe M, Hoffmann K, Moser B, Raynaud M et al (2004) Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. Am J Hum Genet 75(6):1149–1154. https://doi.org/10.1086/426460
Article CAS PubMed PubMed Central Google Scholar
Arora S, Goodall S, Viney R, Einfeld S (2020) Societal cost of childhood intellectual disability in Australia. J Intellect Disabil Res 64(7):524–537. https://doi.org/10.1111/jir.12732
Article CAS PubMed Google Scholar
Fehr S, Wilson M, Downs J, Williams S, Murgia A, Sartori S et al (2013) The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet 21(3):266–273. https://doi.org/10.1038/ejhg.2012.156
Article CAS PubMed Google Scholar
Smeets EE, Pelc K, Dan B (2012) Rett syndrome. Mol Syndromol 2(3–5):113–127
CAS PubMed PubMed Central Google Scholar
Baltussen LL, Negraes PD, Silvestre M, Claxton S, Moeskops M, Christodoulou E et al (2018) Chemical genetic identification of CDKL5 substrates reveals its role in neuronal microtubule dynamics. EMBO J. https://doi.org/10.15252/embj.201899763
Article PubMed PubMed Central Google Scholar
Munoz IM, Morgan ME, Peltier J, Weiland F, Gregorczyk M, Brown FC et al (2018) Phosphoproteomic screening identifies physiological substrates of the CDKL5 kinase. EMBO J. https://doi.org/10.15252/embj.201899559
Article PubMed PubMed Central Google Scholar
Williamson SL, Giudici L, Kilstrup-Nielsen C, Gold W, Pelka GJ, Tam PP et al (2012) A novel transcript of cyclin-dependent kinase-like 5 (CDKL5) has an alternative C-terminus and is the predominant transcript in brain. Hum Genet 131(2):187–200. https://doi.org/10.1007/s00439-011-1058-x
Article CAS PubMed Google Scholar
Fichou Y, Nectoux J, Bahi-Buisson N, Chelly J, Bienvenu T (2011) An isoform of the severe encephalopathy-related CDKL5 gene, including a novel exon with extremely high sequence conservation, is specifically expressed in brain. J Hum Genet 56(1):52–57. https://doi.org/10.1038/jhg.2010.143
Article CAS PubMed Google Scholar
Wang IT, Allen M, Goffin D, Zhu X, Fairless AH, Brodkin ES et al (2012) Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci U S A 109(52):21516–21521. https://doi.org/10.1073/pnas.1216988110
Article PubMed PubMed Central Google Scholar
Kilstrup-Nielsen C, Rusconi L, La Montanara P, Ciceri D, Bergo A, Bedogni F et al (2012) What we know and would like to know about CDKL5 and its involvement in epileptic encephalopathy. Neural Plast 2012:728267. https://doi.org/10.1155/2012/728267
Article CAS PubMed PubMed Central Google Scholar
Rusconi L, Salvatoni L, Giudici L, Bertani I, Kilstrup-Nielsen C, Broccoli V et al (2008) CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C-terminal tail. J Biol Chem 283(44):30101–30111. https://doi.org/10.1074/jbc.M804613200
Article CAS PubMed PubMed Central Google Scholar
Rusconi L, Kilstrup-Nielsen C, Landsberger N (2011) Extrasynaptic N-methyl-d-aspartate (NMDA) receptor stimulation induces cytoplasmic translocation of the CDKL5 kinase and its proteasomal degradation. J Biol Chem 286(42):36550–36558. https://doi.org/10.1074/jbc.M111.235630
Article CAS PubMed PubMed Central Google Scholar
Ricciardi S, Ungaro F, Hambrock M, Rademacher N, Stefanelli G, Brambilla D et al (2012) CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol 14(9):911–923. https://doi.org/10.1038/ncb2566
Article CAS PubMed PubMed Central Google Scholar
Valli E, Trazzi S, Fuchs C, Erriquez D, Bartesaghi R, Perini G et al (2012) CDKL5, a novel MYCN-repressed gene, blocks cell cycle and promotes differentiation of neuronal cells. Biochim Biophys Acta 1819(11–12):1173–1185. https://doi.org/10.1016/j.bbagrm.2012.08.001
Article CAS PubMed PubMed Central Google Scholar
Chen Q, Zhu YC, Yu J, Miao S, Zheng J, Xu L et al (2010) CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling. J Neurosci 30(38):12777–12786. https://doi.org/10.1523/JNEUROSCI.1102-10.2010
Article CAS PubMed PubMed Central Google Scholar
Zhu YC, Li D, Wang L, Lu B, Zheng J, Zhao SL et al (2013) Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci U S A 110(22):9118–9123. https://doi.org/10.1073/pnas.1300003110
Article PubMed PubMed Central Google Scholar
Amendola E, Zhan Y, Mattucci C, Castroflorio E, Calcagno E, Fuchs C et al (2014) Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PLoS ONE 9(5):e91613. https://doi.org/10.1371/journal.pone.0091613
Article CAS PubMed PubMed Central Google Scholar
Fuchs C, Trazzi S, Torricella R, Viggiano R, De Franceschi M, Amendola E et al (2014) Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3beta signaling. Neurobiol Dis 70:53–68. https://doi.org/10.1016/j.nbd.2014.06.006
Article CAS PubMed PubMed Central Google Scholar
Lin C, Franco B, Rosner MR (2005) CDKL5/Stk9 kinase inactivation is associated with neuronal developmental disorders. Hum Mol Genet 14(24):3775–3786. https://doi.org/10.1093/hmg/ddi391
Article CAS PubMed Google Scholar
Bertani I, Rusconi L, Bolognese F, Forlani G, Conca B, De Monte L et al (2006) Functional consequences of mutations in CDKL5, an X-linked gene involved in infantile spasms and mental retardation. J Biol Chem 281(42):32048–32056. https://doi.org/10.1074/jbc.M606325200
Article CAS PubMed Google Scholar
Trazzi S, Fuchs C, Viggiano R, De Franceschi M, Valli E, Jedynak P et al (2016) HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder. Hum Mol Genet 25(18):3887–3907. https://doi.org/10.1093/hmg/ddw231
Article CAS PubMed Google Scholar
Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R et al (2005) CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet 14(14):1935–1946. https://doi.org/10.1093/hmg/ddi198
Article CAS PubMed Google Scholar
Sekiguchi M, Katayama S, Hatano N, Shigeri Y, Sueyoshi N, Kameshita I (2013) Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X-linked neurodevelopmental disorder. Arch Biochem Biophys 535(2):257–267. https://doi.org/10.1016/j.abb.2013.04.012
留言 (0)