Novel CDKL5 targets identified in human iPSC-derived neurons

Kawahata I, Fukunaga K (2023) Protein kinases and neurodegenerative diseases. Int J Mol Sci. https://doi.org/10.3390/ijms24065574

Article  PubMed  PubMed Central  Google Scholar 

Olson HE, Demarest ST, Pestana-Knight EM, Swanson LC, Iqbal S, Lal D et al (2019) Cyclin-dependent kinase-like 5 deficiency disorder: clinical review. Pediatr Neurol 97:18–25. https://doi.org/10.1016/j.pediatrneurol.2019.02.015

Article  PubMed  PubMed Central  Google Scholar 

Weaving LS, Christodoulou J, Williamson SL, Friend KL, McKenzie OL, Archer H et al (2004) Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet 75(6):1079–1093. https://doi.org/10.1086/426462

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao J, Van Esch H, Hagedorn-Greiwe M, Hoffmann K, Moser B, Raynaud M et al (2004) Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. Am J Hum Genet 75(6):1149–1154. https://doi.org/10.1086/426460

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arora S, Goodall S, Viney R, Einfeld S (2020) Societal cost of childhood intellectual disability in Australia. J Intellect Disabil Res 64(7):524–537. https://doi.org/10.1111/jir.12732

Article  CAS  PubMed  Google Scholar 

Fehr S, Wilson M, Downs J, Williams S, Murgia A, Sartori S et al (2013) The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet 21(3):266–273. https://doi.org/10.1038/ejhg.2012.156

Article  CAS  PubMed  Google Scholar 

Smeets EE, Pelc K, Dan B (2012) Rett syndrome. Mol Syndromol 2(3–5):113–127

CAS  PubMed  PubMed Central  Google Scholar 

Baltussen LL, Negraes PD, Silvestre M, Claxton S, Moeskops M, Christodoulou E et al (2018) Chemical genetic identification of CDKL5 substrates reveals its role in neuronal microtubule dynamics. EMBO J. https://doi.org/10.15252/embj.201899763

Article  PubMed  PubMed Central  Google Scholar 

Munoz IM, Morgan ME, Peltier J, Weiland F, Gregorczyk M, Brown FC et al (2018) Phosphoproteomic screening identifies physiological substrates of the CDKL5 kinase. EMBO J. https://doi.org/10.15252/embj.201899559

Article  PubMed  PubMed Central  Google Scholar 

Williamson SL, Giudici L, Kilstrup-Nielsen C, Gold W, Pelka GJ, Tam PP et al (2012) A novel transcript of cyclin-dependent kinase-like 5 (CDKL5) has an alternative C-terminus and is the predominant transcript in brain. Hum Genet 131(2):187–200. https://doi.org/10.1007/s00439-011-1058-x

Article  CAS  PubMed  Google Scholar 

Fichou Y, Nectoux J, Bahi-Buisson N, Chelly J, Bienvenu T (2011) An isoform of the severe encephalopathy-related CDKL5 gene, including a novel exon with extremely high sequence conservation, is specifically expressed in brain. J Hum Genet 56(1):52–57. https://doi.org/10.1038/jhg.2010.143

Article  CAS  PubMed  Google Scholar 

Wang IT, Allen M, Goffin D, Zhu X, Fairless AH, Brodkin ES et al (2012) Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci U S A 109(52):21516–21521. https://doi.org/10.1073/pnas.1216988110

Article  PubMed  PubMed Central  Google Scholar 

Kilstrup-Nielsen C, Rusconi L, La Montanara P, Ciceri D, Bergo A, Bedogni F et al (2012) What we know and would like to know about CDKL5 and its involvement in epileptic encephalopathy. Neural Plast 2012:728267. https://doi.org/10.1155/2012/728267

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rusconi L, Salvatoni L, Giudici L, Bertani I, Kilstrup-Nielsen C, Broccoli V et al (2008) CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C-terminal tail. J Biol Chem 283(44):30101–30111. https://doi.org/10.1074/jbc.M804613200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rusconi L, Kilstrup-Nielsen C, Landsberger N (2011) Extrasynaptic N-methyl-d-aspartate (NMDA) receptor stimulation induces cytoplasmic translocation of the CDKL5 kinase and its proteasomal degradation. J Biol Chem 286(42):36550–36558. https://doi.org/10.1074/jbc.M111.235630

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ricciardi S, Ungaro F, Hambrock M, Rademacher N, Stefanelli G, Brambilla D et al (2012) CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol 14(9):911–923. https://doi.org/10.1038/ncb2566

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valli E, Trazzi S, Fuchs C, Erriquez D, Bartesaghi R, Perini G et al (2012) CDKL5, a novel MYCN-repressed gene, blocks cell cycle and promotes differentiation of neuronal cells. Biochim Biophys Acta 1819(11–12):1173–1185. https://doi.org/10.1016/j.bbagrm.2012.08.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, Zhu YC, Yu J, Miao S, Zheng J, Xu L et al (2010) CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling. J Neurosci 30(38):12777–12786. https://doi.org/10.1523/JNEUROSCI.1102-10.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu YC, Li D, Wang L, Lu B, Zheng J, Zhao SL et al (2013) Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci U S A 110(22):9118–9123. https://doi.org/10.1073/pnas.1300003110

Article  PubMed  PubMed Central  Google Scholar 

Amendola E, Zhan Y, Mattucci C, Castroflorio E, Calcagno E, Fuchs C et al (2014) Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PLoS ONE 9(5):e91613. https://doi.org/10.1371/journal.pone.0091613

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuchs C, Trazzi S, Torricella R, Viggiano R, De Franceschi M, Amendola E et al (2014) Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3beta signaling. Neurobiol Dis 70:53–68. https://doi.org/10.1016/j.nbd.2014.06.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin C, Franco B, Rosner MR (2005) CDKL5/Stk9 kinase inactivation is associated with neuronal developmental disorders. Hum Mol Genet 14(24):3775–3786. https://doi.org/10.1093/hmg/ddi391

Article  CAS  PubMed  Google Scholar 

Bertani I, Rusconi L, Bolognese F, Forlani G, Conca B, De Monte L et al (2006) Functional consequences of mutations in CDKL5, an X-linked gene involved in infantile spasms and mental retardation. J Biol Chem 281(42):32048–32056. https://doi.org/10.1074/jbc.M606325200

Article  CAS  PubMed  Google Scholar 

Trazzi S, Fuchs C, Viggiano R, De Franceschi M, Valli E, Jedynak P et al (2016) HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder. Hum Mol Genet 25(18):3887–3907. https://doi.org/10.1093/hmg/ddw231

Article  CAS  PubMed  Google Scholar 

Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R et al (2005) CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet 14(14):1935–1946. https://doi.org/10.1093/hmg/ddi198

Article  CAS  PubMed  Google Scholar 

Sekiguchi M, Katayama S, Hatano N, Shigeri Y, Sueyoshi N, Kameshita I (2013) Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X-linked neurodevelopmental disorder. Arch Biochem Biophys 535(2):257–267. https://doi.org/10.1016/j.abb.2013.04.012

留言 (0)

沒有登入
gif