A 3000-year-old founder variant in the DRC1 gene causes primary ciliary dyskinesia in Japan and Korea

Keicho N, Hijikata M, Miyabayashi A, Wakabayashi K, Yamada H, Ito M, et al. Impact of primary ciliary dyskinesia: beyond sinobronchial syndrome in Japan. Respir Investig. 2024;62:179–86.

Article  CAS  PubMed  Google Scholar 

Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol. 2021;110:19–33.

Article  CAS  PubMed  Google Scholar 

Xu Y, Feng G, Yano T, Masuda S, Nagao M, Gotoh S, et al. Characteristic genetic spectrum of primary ciliary dyskinesia in Japanese patients and global ethnic heterogeneity: population-based genomic variation database analysis. J Hum Genet. 2023;68:455–61.

Article  CAS  PubMed  Google Scholar 

Zariwala MA, Knowles MR, Leigh MW. Primary Ciliary Dyskinesia. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al., editors. GeneReviews((R)). Seattle (WA) 1993.

Takeuchi K, Xu Y, Kitano M, Chiyonobu K, Abo M, Ikegami K, et al. Copy number variation in DRC1 is the major cause of primary ciliary dyskinesia in the Japanese population. Mol Genet Genom Med. 2020;8:e1137.

Article  CAS  Google Scholar 

Keicho N, Hijikata M, Morimoto K, Homma S, Taguchi Y, Azuma A, et al. Primary ciliary dyskinesia caused by a large homozygous deletion including exons 1-4 of DRC1 in Japanese patients with recurrent sinopulmonary infection. Mol Genet Genom Med. 2020;8:e1033.

Article  Google Scholar 

Morimoto K, Hijikata M, Zariwala MA, Nykamp K, Inaba A, Guo TC, et al. Recurring large deletion in DRC1 (CCDC164) identified as causing primary ciliary dyskinesia in two Asian patients. Mol Genet Genom Med. 2019;7:e838.

Article  Google Scholar 

Kim MJ, Kim S, Chae SW, Lee S, Yoon JG, Kim B, et al. Prevalence and founder effect of DRC1 exon 1–4 deletion in Korean patients with primary ciliary dyskinesia. J Hum Genet. 2023;68:369–74.

Article  CAS  PubMed  Google Scholar 

Kobayashi K, Nakahori Y, Mizuno K, Miyake M, Kumagai T, Honma A, et al. Founder-haplotype analysis in Fukuyama-type congenital muscular dystrophy (FCMD). Hum Genet. 1998;103:323–7.

Article  CAS  PubMed  Google Scholar 

Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

Article  Google Scholar 

Takeuchi K, Abo M, Date H, Gotoh S, Kamijo A, Kaneko T, et al. Practical guide for the diagnosis and management of primary ciliary dyskinesia. Auris Nasus Larynx. 2024;51:553–68.

Article  PubMed  Google Scholar 

Takeuchi K, Kitano M, Kiyotoshi H, Ikegami K, Ogawa S, Ikejiri M, et al. A targeted next-generation sequencing panel reveals novel mutations in Japanese patients with primary ciliary dyskinesia. Auris Nasus Larynx. 2018;45:585–91.

Article  PubMed  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i90.

Article  PubMed  PubMed Central  Google Scholar 

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. https://doi.org/10.48550/arXiv.1207.3907.

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008.

Tan A, Abecasis GR, Kang HM. Unified representation of genetic variants. Bioinformatics. 2015;31:2202–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gandolfo LC, Bahlo M, Speed TP. Dating rare mutations from small samples with dense marker data. Genetics. 2014;197:1315–27.

Article  PubMed  PubMed Central  Google Scholar 

Moorjani P, Sankararaman S, Fu Q, Przeworski M, Patterson N, Reich D. A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years. Proc Natl Acad Sci USA. 2016;113:5652–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–5.

Article  CAS  PubMed  Google Scholar 

Knaus BJ, Grunwald NJ. Vcfr: a package to manipulate and visualize variant call format data in R. Mol Ecol Resour. 2017;17:44–53.

Article  CAS  PubMed  Google Scholar 

Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012;44:821–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong GY, Myles S. LinkImpute: fast and accurate genotype imputation for nonmodel organisms. G3 Genes. 2015;5(11):2383–90.

Google Scholar 

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.

Article  CAS  PubMed  Google Scholar 

Robinson JT, Thorvaldsdottir H, Turner D, Mesirov JP. igv.js: an embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV). Bioinformatics. 2023;39:btac830.

Fassad MR, Patel MP, Shoemark A, Cullup T, Hayward J, Dixon M, et al. Clinical utility of NGS diagnosis and disease stratification in a multiethnic primary ciliary dyskinesia cohort. J Med Genet. 2020;57:322–30.

Article  CAS  PubMed  Google Scholar 

Hudson MJ, Nakagome S, Whitman JB. The evolving Japanese: the dual structure hypothesis at 30. Evol Hum Sci. 2020;2:e6.

Article  PubMed  PubMed Central  Google Scholar 

Cooke NP, Mattiangeli V, Cassidy LM, Okazaki K, Kasai K, Bradley DG, et al. Genomic insights into a tripartite ancestry in the Southern Ryukyu Islands. Evol Hum Sci. 2023;5:e23.

Article  PubMed  PubMed Central  Google Scholar 

Cooke NP, Mattiangeli V, Cassidy LM, Okazaki K, Stokes CA, Onbe S, et al. Ancient genomics reveals tripartite origins of Japanese populations. Sci Adv. 2021;7:eabh2419.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ogami-Takamura K, Saiki K, Nishi K, Wakebe T, Endo D, Murai K, et al. Significant asymmetry of the bilateral upper extremities of a skeleton excavated from the Mashiki-Azamabaru Site, Okinawa Island, Japan. Biomed Res Int. 2021;2021:4884760.

Article  PubMed  PubMed Central  Google Scholar 

Jinam T, Kawai Y, Kamatani Y, Sonoda S, Makisumi K, Sameshima H, et al. Genome-wide SNP data of Izumo and Makurazaki populations support inner-dual structure model for origin of Yamato people. J Hum Genet. 2021;66:681–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watanabe Y, Naka I, Khor SS, Sawai H, Hitomi Y, Tokunaga K, et al. Analysis of whole Y-chromosome sequences reveals the Japanese population history in the Jomon period. Sci Rep. 2019;9:8556.

Article  PubMed  PubMed Central  Google Scholar 

Hagihara Y, Nara T. Morphological features of the fibula in Jomon hunter-gatherers from the shell mounds of the Pacific coastal area. Am J Phys Anthropol. 2016;160:708–18.

Article  PubMed  Google Scholar 

Ito M, Morimoto K, Ohfuji T, Miyabayashi A, Wakabayashi K, Yamada H, et al. FOXJ1 variants causing primary ciliary dyskinesia with hydrocephalus: a case report from Japan. Intern Med. 2024;63:1433–7.

Article  PubMed  Google Scholar 

Xu Y, Ogawa S, Adachi Y, Sone N, Gotoh S, Ikejiri M, et al. A pediatric case of primary ciliary dyskinesia caused by novel copy number variation in PIH1D3. Auris Nasus Larynx. 2022;49:893–7.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif