Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, et al. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer. 2022;21:87.
Article CAS PubMed PubMed Central Google Scholar
Yang Y, Zhou X, Liu X, Song R, Gao Y, Wang S. Implications of FBXW7 in neurodevelopment and neurodegeneration: Molecular mechanisms and therapeutic potential. Front Cell Neurosci. 2021;15:736008.
Article CAS PubMed PubMed Central Google Scholar
Roversi G, Picinelli C, Bestetti I, Crippa M, Perotti D, Ciceri S, et al. Constitutional de novo deletion of the FBXW7 gene in a patient with focal segmental glomerulosclerosis and multiple primitive tumors. Sci Rep. 2015;5:15454.
Article CAS PubMed PubMed Central Google Scholar
Ge Z, Leighton JS, Wang Y, Peng X, Chen Z, Chen H, et al. Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. Cell Rep. 2018;23:213–26.e3.
Article CAS PubMed PubMed Central Google Scholar
Mahamdallie S, Yost S, Poyastro-Pearson E, Holt E, Zachariou A, Seal S, et al. Identification of new Wilms tumour predisposition genes: an exome sequencing study. Lancet Child Adolesc Health. 2019;3:322–31.
Article PubMed PubMed Central Google Scholar
Stoltze UK, Hildonen M, Hansen TVO, Foss-Skiftesvik J, Byrjalsen A, Lundsgaard M, et al. Germline (epi)genetics reveals high predisposition in females: a 5-year, nationwide, prospective Wilms tumour cohort. J Med Genet. 2023;60:842–9.
Article CAS PubMed Google Scholar
Stephenson SEM, Costain G, Blok LER, Silk MA, Nguyen TB, Dong X, et al. Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome. Am J Hum Genet. 2022;109:601–17.
Article CAS PubMed PubMed Central Google Scholar
Vujanić GM, Parsons LN, D’Hooghe E, Treece AL, Collini P, Perlman EJ. Pathology of Wilms’ tumour in International Society of Paediatric Oncology (SIOP) and Children’s oncology group (COG) renal tumour studies: Similarities and differences. Histopathology. 2022;80:1026–37.
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.
Article PubMed PubMed Central Google Scholar
Kohno T, Kato M, Kohsaka S, Sudo T, Tamai I, Shiraishi Y, et al. C-CAT: The National Datacenter for Cancer Genomic Medicine in Japan. Cancer Discov. 2022;12:2509–15.
Article PubMed PubMed Central Google Scholar
Mertens F, Johansson B, Mitelman F. Isochromosomes in neoplasia. Genes, Chromosomes Cancer. 1994;10:221–30.
Article CAS PubMed Google Scholar
Meier-Abt F, Kraemer D, Braun N, Reinehr M, Stutz-Grunder E, Steindl K, et al. Further evidence that the neurodevelopmental gene FBXW7 predisposes to Wilms tumor. Am J Med Genet A. 2024;194:e63528. https://doi.org/10.1002/ajmg.a.63528
Article CAS PubMed Google Scholar
Zhou W, Wang C, Fu L, Shi W, Zhang A, Jia Z, et al. Copy number variants at 4q31.3 affecting the regulatory region of FBXW7 associated with neurodevelopmental delay. Clin Genet. 2024. https://doi.org/10.1111/cge.14548.
Kalish JM, Doros L, Helman LJ, Hennekam RC, Kuiper RP, Maas SM, et al. Surveillance Recommendations for Children with Overgrowth Syndromes and Predisposition to Wilms Tumors and Hepatoblastoma. Clin Cancer Res. 2017;23:e115–e122.
Article CAS PubMed PubMed Central Google Scholar
Scott RH, Walker L, Olsen ØE, Levitt G, Kenney I, Maher E, et al. Surveillance for Wilms tumour in at-risk children: pragmatic recommendations for best practice. Arch Dis Child. 2006;91:995–9.
留言 (0)