Tsao CW, Aday AW, Almarzooq ZI, et al: Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023, 147(8):e93-e621. https://www.ncbi.nlm.nih.gov/pubmed/36695182. Accessed 28 Jul 2024.
Nakajima A, Sugiyama T, Araki M, et al: Plaque Rupture, Compared With Plaque Erosion, Is Associated With a Higher Level of Pancoronary Inflammation. JACC Cardiovasc Imaging 2022, 15(5):828–839. https://www.ncbi.nlm.nih.gov/pubmed/34876381. Accessed 28 Jul 2024.
Stone GW, Maehara A, Lansky AJ, et al: A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011, 364(3):226–235. https://www.ncbi.nlm.nih.gov/pubmed/21247313. Accessed 28 Jul 2024.
Santangelo G, Gherbesi E, Donisi L, et al: Imaging approaches in risk stratification of patients with coronary artery disease: a narrative review. Archives of Medical Science. 2024. https://doi.org/10.5114/aoms/188808.
Dawson LP, Lum M, Nerleker N, Nicholls SJ, Layland J: Coronary Atherosclerotic Plaque Regression: JACC State-of-the-Art Review. J Am Coll Cardiol 2022, 79(1):66–82. https://www.ncbi.nlm.nih.gov/pubmed/34991791. Accessed 28 Jul 2024.
Rivera FB, Cha SW, Varona MC, et al: Atherosclerotic coronary plaque regression from lipid-lowering therapies: A meta-analysis and meta-regression. Am J Prev Cardiol 2024, 18:100645. https://www.ncbi.nlm.nih.gov/pubmed/38550634
Macchi C, Ferri N, Sirtori CR, Corsini A, Banach M, Ruscica M: Proprotein Convertase Subtilisin/Kexin Type 9: A View beyond the Canonical Cholesterol-Lowering Impact. Am J Pathol 2021, 191(8):1385–1397. https://www.ncbi.nlm.nih.gov/pubmed/34019847
Ferri N, Ruscica M, Lupo MG, Vicenzi M, Sirtori CR, Corsini A: Pharmacological rationale for the very early treatment of acute coronary syndrome with monoclonal antibodies anti-PCSK9. Pharmacol Res 2022, 184:106439. https://www.ncbi.nlm.nih.gov/pubmed/36100012
Brugaletta S, Garcia-Garcia HM, Serruys PW, et al: NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography. JACC Cardiovasc Imaging 2011, 4(6):647–655. https://www.ncbi.nlm.nih.gov/pubmed/21679900
Bourantas CV, Jaffer FA, Gijsen FJ, et al: Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology. Eur Heart J 2017, 38(6):400–412. https://www.ncbi.nlm.nih.gov/pubmed/27118197
Li J, Montarello NJ, Hoogendoorn A, et al: Multimodality Intravascular Imaging of High-Risk Coronary Plaque. JACC Cardiovasc Imaging 2022, 15(1):145–159. https://www.ncbi.nlm.nih.gov/pubmed/34023267
Figtree GA, Adamson PD, Antoniades C, Blumenthal RS, Blaha M, Budoff M, Celermajer DS, Chan MY, Chow CK, Dey D, Dwivedi G, Giannotti N, Grieve SM, Hamilton-Craig C, Kingwell BA, Kovacic JC, Min JK, Newby DE, Patel S, Peter K, Psaltis PJ, Vernon ST, Wong DT, Nicholls SJ. Noninvasive Plaque Imaging to Accelerate Coronary Artery Disease Drug Development. Circulation. 2022 29;146(22):1712–1727. https://doi.org/10.1161/CIRCULATIONAHA.122.060308.
Nafee T, Shah A, Forsberg M, Zheng J, Ou J: State-of-art review: intravascular imaging in percutaneous coronary interventions. Cardiol Plus 2023, 8(4):227–246. https://www.ncbi.nlm.nih.gov/pubmed/38304487
Peng C, Wu H, Kim S, Dai X, Jiang X: Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging. Sensors (Basel) 2021, 21(10). https://www.ncbi.nlm.nih.gov/pubmed/34069613
Narula J, Garg P, Achenbach S, Motoyama S, Virmani R, Strauss HW: Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med 2008, 5 Suppl 2:S2–10. https://www.ncbi.nlm.nih.gov/pubmed/18641603
Nicholls SJ, Chandrashekhar YS: Time for Intravascular Plaque Imaging to Connect the Dots From Biology to Therapeutics. JACC Cardiovasc Imaging 2021, 14(7):1490–1492. https://www.ncbi.nlm.nih.gov/pubmed/34238541
Nurmohamed NS, van Rosendael AR, Danad I, et al: Atherosclerosis evaluation and cardiovascular risk estimation using coronary computed tomography angiography. Eur Heart J 2024, 45(20):1783–1800. https://www.ncbi.nlm.nih.gov/pubmed/38606889
Barbieri L, D'Errico A, Avallone C, et al: Optical Coherence Tomography and Coronary Dissection: Precious Tool or Useless Surplus? Front Cardiovasc Med 2022, 9:822998. https://www.ncbi.nlm.nih.gov/pubmed/35433885
Di Vito L, Agozzino M, Marco V, et al: Identification and quantification of macrophage presence in coronary atherosclerotic plaques by optical coherence tomography. Eur Heart J Cardiovasc Imaging 2015, 16(7):807–813. https://www.ncbi.nlm.nih.gov/pubmed/25588802
Yonetsu T, Jang IK: Cardiac Optical Coherence Tomography: History, Current Status, and Perspective. JACC Asia 2024, 4(2):89–107. https://www.ncbi.nlm.nih.gov/pubmed/38371282
Gardner CM, Tan H, Hull EL, et al: Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging 2008, 1(5):638–648. https://www.ncbi.nlm.nih.gov/pubmed/19356494
Waksman R, Di Mario C, Torguson R, et al: Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet 2019, 394(10209):1629–1637. https://www.ncbi.nlm.nih.gov/pubmed/31570255
Kwiecinski J, Tzolos E, Williams MC, et al: Noninvasive Coronary Atherosclerotic Plaque Imaging. JACC Cardiovasc Imaging 2023, 16(12):1608–1622. https://www.ncbi.nlm.nih.gov/pubmed/38056987
Mezquita AJV, Biavati F, Falk V, et al: Clinical quantitative coronary artery stenosis and coronary atherosclerosis imaging: a Consensus Statement from the Quantitative Cardiovascular Imaging Study Group. Nat Rev Cardiol 2023, 20(10):696–714. https://www.ncbi.nlm.nih.gov/pubmed/37277608
Rumberger JA, Kaufman L: A rosetta stone for coronary calcium risk stratification: agatston, volume, and mass scores in 11,490 individuals. AJR Am J Roentgenol 2003, 181(3):743–748. https://www.ncbi.nlm.nih.gov/pubmed/12933474
Nurmohamed NS, van Rosendael AR, Danad I, et al: Atherosclerosis evaluation and cardiovascular risk estimation using coronary computed tomography angiography. Eur Heart J 2024. https://www.ncbi.nlm.nih.gov/pubmed/38606889
Voros S, Rinehart S, Qian Z, et al: Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging 2011, 4(5):537–548. https://www.ncbi.nlm.nih.gov/pubmed/21565743
Maffei E, Martini C, Rossi A, et al: Diagnostic accuracy of second-generation dual-source computed tomography coronary angiography with iterative reconstructions: a real-world experience. Radiol Med 2012, 117(5):725–738. https://www.ncbi.nlm.nih.gov/pubmed/22095423
Sun Z, Ng CKC: Finetuned Super-Resolution Generative Adversarial Network (Artificial Intelligence) Model for Calcium Deblooming in Coronary Computed Tomography Angiography. J Pers Med 2022, 12(9). https://www.ncbi.nlm.nih.gov/pubmed/36143139
Nurmohamed NS, Min JK, Anthopolos R, Reynolds HR, Earls JP, Crabtree T, Mancini GBJ, Leipsic J, Budoff MJ, Hague CJ, O'Brien SM, Stone GW, Berger JS, Donnino R, Sidhu MS, Newman JD, Boden WE, Chaitman BR, Stone PH, Bangalore S, Spertus JA, Mark DB, Shaw LJ, Hochman JS, Maron DJ. Atherosclerosis quantification and cardiovascular risk: the ISCHEMIA trial. Eur Heart J. 2024:ehae471. https://doi.org/10.1093/eurheartj/ehae471.
Andrew M, John H: The challenge of coronary calcium on coronary computed tomographic angiography (CCTA) scans: effect on interpretation and possible solutions. Int J Cardiovasc Imaging 2015, 31 Suppl 2:145–157. https://www.ncbi.nlm.nih.gov/pubmed/26408105
Sarraju A, Nissen SE: Atherosclerotic plaque stabilization and regression: a review of clinical evidence. Nat Rev Cardiol 2024. https://www.ncbi.nlm.nih.gov/pubmed/38177454
Sakai K, Mizukami T, Leipsic J, et al: Coronary Atherosclerosis Phenotypes in Focal and Diffuse Disease. JACC Cardiovasc Imaging 2023, 16(11):1452–1464. https://www.ncbi.nlm.nih.gov/pubmed/37480908
West HW, Dangas K, Antoniades C: Advances in Clinical Imaging of Vascular Inflammation: A State-of-the-Art Review. JACC: Basic to Translational Science 2024, 9(5):23.
Giunzioni I, Tavori H, Covarrubias R, et al: Local effects of human PCSK9 on the atherosclerotic lesion. J Pathol 2016, 238(1):52–62. https://www.ncbi.nlm.nih.gov/pubmed/26333678
Liu A, Frostegard J: PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J Intern Med 2018. https://www.ncbi.nlm.nih.gov/pubmed/29617044
Denis M, Marcinkiewicz J, Zaid A, et al: Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation 2012, 125(7):894–901. https://www.ncbi.nlm.nih.gov/pubmed/22261195
Tavori H, Giunzioni I, Predazzi IM, et al: Human PCSK9 promotes hepatic lipogenesis and atherosclerosis development via apoE- and LDLR-mediated mechanisms. Cardiovasc Res 2016, 110(2):268–278. https://www.ncbi.nlm.nih.gov/pubmed/26980204
Kuhnast S, van der Hoorn JW, Pieterman EJ, et al: Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res 2014, 55(10):2103–2112. https://www.ncbi.nlm.nih.gov/pubmed/25139399
Landlinger C, Pouwer MG, Juno C, et al: The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Heart J 2017, 38(32):2499–2507. https://www.ncbi.nlm.nih.gov/pubmed/28637178
Ferri N, Marchiano S, Tibolla G, et al: PCSK9 knock-out mice are protected from neointimal formation in response to perivascular carotid collar placement. Atherosclerosis 2016, 253:214–224. https://www.ncbi.nlm.nih.gov/pubmed/27477186
Zhang Y, Dai D, Geng S, et al: PCSK9 expression in fibrous cap possesses a marker for rupture in advanced plaque. Vasc Med 2024.
Ding Z, Liu S, Wang X, et al: Hemodynamic shear stress via ROS modulates PCSK9 expression in human vascular endothelial and smooth muscle cells and along the mouse aorta. Antioxid Redox Signal 2015, 22(9):760–771. https://www.ncbi.nlm.nih.gov/pubmed/25490141
Ding Z, Liu S, Wang X, et al: Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc Res 2015, 107(4):556–567. https://www.ncbi.nlm.nih.gov/pubmed/26092101
Camera M, Rossetti L, Barbieri SS, et al: PCSK9 as a Positive Modulator of Platelet Activation. J Am Coll Cardiol 2018, 71(8):952–954. https://www.ncbi.nlm.nih.gov/pubmed/29471945
Qi Z, Hu L, Zhang J, et al: PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) Enhances Platelet Activation, Thrombosis, and Myocardial Infarct Expansion by Binding to Platelet CD36. Circulation 2021, 143(1):45–61. https://www.ncbi.nlm.nih.gov/pubmed/32988222
Leander K, Malarstig A, Van't Hooft FM, et al: Circulating Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Predicts Future Risk of Cardiovascular Events Independently of Established Risk Factors. Circulation 2016, 133(13):1230–1239. https://www.ncbi.nlm.nih.gov/pubmed/26896437
Ruscica M, Macchi C, Giuliani A, et al: Circulating PCSK9 as a prognostic biomarker of cardiovascular events in individuals with type 2 diabetes: evidence from a 16.8-year follow-up study. Cardiovasc Diabetol 2023, 22(1):222. https://www.ncbi.nlm.nih.gov/pubmed/37620933
Ridker PM, Rifai N, Bradwin G, Rose L: Plasma proprotein convertase subtilisin/kexin type 9 levels and the risk of first cardiovascular events. Eur Heart J 2016, 37(6):554–560. https://www.ncbi.nlm.nih.gov/pubmed/26508163
Zhu YM, Anderson TJ, Sikdar K, et al: Association of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) With Cardiovascular Risk in Primary Prevention. Arterioscler Thromb Vasc Biol 2015, 35(10):2254–2259. https://www.ncbi.nlm.nih.gov/pubmed/26293463
Cheng JM, Oemrawsingh RM, Garcia-Garcia HM, et al: PCSK9 in relation to coronary plaque inflammation: Results of the ATHEROREMO-IVUS study. Atherosclerosis 2016, 248:117–122. https://www.ncbi.nlm.nih.gov/pubmed/27015246
Lee CJ, Lee YH, Park SW, et al: Association of serum proprotein convertase subtilisin/kexin type 9 with carotid intima media thickness in hypertensive subjects. Metabolism 2013, 62(6):845–850. https://www.ncbi.nlm.nih.gov/pubmed/23380568
Coggi D, Frigerio B, Bonomi A, et al: Relationship between Circulating PCSK9 and Markers of Subclinical Atherosclerosis-The IMPROVE Study. Biomedicines 2021, 9(7). https://www.ncbi.nlm.nih.gov/pubmed/34356905
Marfella R, Prattichizzo F, Sardu C, et al: Evidence of an anti-inflammatory effect of PCSK9 inhibitors within the human atherosclerotic plaque. Atherosclerosis 2023, 378:117180. https://www.ncbi.nlm.nih.gov/pubmed/37422356
Puri R, Nissen SE, Somaratne R, et al: Impact of PCSK9 inhibition on coronary atheroma progression: Rationale and design of Global Assessment of Plaque Regression with a PCSK9 Antibody as Measured by Intravascular Ultrasound (GLAGOV). Am Heart J 2016, 176:83–92. https://www.ncbi.nlm.nih.gov/pubmed/27264224
Nicholls SJ, Puri R, Anderson T, et al: Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. JAMA 2016, 316(22):2373–2384. https://www.ncbi.nlm.nih.gov/pubmed/27846344
Nicholls SJ, Puri R: Implications of GLAGOV study. Curr Opin Lipidol 2017, 28(6):465–469. https://www.ncbi.nlm.nih.gov/pubmed/28937411
Nicholls SJ, Ballantyne CM, Barter PJ, et al: Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med 2011, 365(22):2078–2087. https://www.ncbi.nlm.nih.gov/pubmed/22085316
Ruscica M, Corsini A, Ferri N, Banach M, Sirtori CR: Clinical approach to the inflammatory etiology of cardiovascular diseases. Pharmacol Res 2020, 159:104916. https://www.ncbi.nlm.nih.gov/pubmed/32445957
Nelson AJ, Puri R, Brennan DM, et al: C-reactive protein levels and plaque regression with evolocumab: Insights from GLAGOV. Am J Prev Cardiol 2020, 3:100091. https://www.ncbi.nlm.nih.gov/pubmed/34327467
Xing L, Higuma T, Wang Z, et al: Clinical Significance of Lipid-Rich Plaque Detected by Optical Coherence Tomography: A 4-Year Follow-Up Study. J Am Coll Cardiol 2017, 69(20):2502–2513. https://www.ncbi.nlm.nih.gov/pubmed/28521888
Nicholls SJ, Kataoka Y, Nissen SE, et al: Effect of Evolocumab on Coronary Plaque Phenotype and Burden in Statin-Treated Patients Following Myocardial Infarction. JACC Cardiovasc Imaging 2022, 15(7):1308–1321. https://www.ncbi.nlm.nih.gov/pubmed/35431172
Stone GW, Narula J: Shining a Light on Plaque Vulnerability and Treatment. JACC Cardiovasc Imaging 2022, 15(7):1322–1324. https://www.ncbi.nlm.nih.gov/pubmed/35798407
Zanda G, Varbella F: Stabilization of vulnerable plaque in the ACS patient: evidence from HUYGENS studies. Eur Heart J Suppl 2023, 25(Suppl C):C106-C108. https://www.ncbi.nlm.nih.gov/pubmed/37125301
Yano H, Horinaka S, Ishimitsu T: Effect of evolocumab therapy on coronary fibrous cap thickness assessed by optical coherence tomography in patients with acute coronary syndrome. J Cardiol 2020, 75(3):289–295. https://www.ncbi.nlm.nih.gov/pubmed/31495548
Hirai K, Imamura S, Hirai A, Ookawara S, Morishita Y: Effect of Evolocumab on Vulnerable Coronary Plaques: A Serial Coronary Computed Tomography Angiography Study. J Clin Med 2020, 9(10). https://www.ncbi.nlm.nih.gov/pubmed/33080961
Gupta K, Balachandran I, Foy J, et al: Highlights of Cardiovascular Disease Prevention Studies Presented at the 2023 American College of Cardiology Conference. Curr Atheroscler Rep 2023, 25(6):309–321. https://www.ncbi.nlm.nih.gov/pubmed/37086374
Uehara H, Kajiya T, Abe M, Nakata M, Hosogi S, Ueda S: Early and Short-term Use of PCSK9-Inhibitors on Coronary Plaque Stability in Acute Coronary Syndrome. European Heart Journal Open 2024, oeae055.
Raber L, Ueki Y, Otsuka T, et al: Effect of Alirocumab Added to High-Intensity Statin Therapy on Coronary Atherosclerosis in Patients With Acute Myocardial Infarction: The PACMAN-AMI Randomized Clinical Trial. JAMA 2022, 327(18):1771–1781. https://www.ncbi.nlm.nih.gov/pubmed/35368058
De Luca L, Halasz G: The PACMAN-AMI trial: a revolution in the treatment of acute coronary syndromes. Eur Heart J Suppl 2023, 25(Suppl C):C90-C95. https://www.ncbi.nlm.nih.gov/pubmed/37125317
Biccire FG, Haner J, Losdat S, et al: Concomitant Coronary Atheroma Regression and Stabilization in Response to Lipid-Lowering Therapy. J Am Coll Cardiol 2023, 82(18):1737–1747. https://www.ncbi.nlm.nih.gov/pubmed/37640248
Bar S, Kavaliauskaite R, Otsuka T, et al: Impact of alirocumab on plaque regression and haemodynamics of non-culprit arteries in patients with acute myocardial infarction: a prespecified substudy of the PACMAN-AMI trial. EuroIntervention 2023, 19(4):e286-e296. https://www.ncbi.nlm.nih.gov/pubmed/37341586
Rexhaj E, Bar S, Soria R, et al: Effects of alirocumab on endothelial function and coronary atherosclerosis in myocardial infarction: A PACMAN-AMI randomized clinical trial substudy. Atherosclerosis 2024, 392:117504. https://www.ncbi.nlm.nih.gov/pubmed/38513436
Ueki Y, Haner JD, Losdat S, et al: Effect of Alirocumab Added to High-Intensity Statin on Platelet Reactivity and Noncoding RNAs in Patients with AMI: A Substudy of the PACMAN-AMI Trial. Thromb Haemost 2023. https://www.ncbi.nlm.nih.gov/pubmed/37595625
Perez de Isla L, Diaz-Diaz JL, Romero MJ, et al: Alirocumab and Coronary Atherosclerosis in Asymptomatic Patients with Familial Hypercholesterolemia: The ARCHITECT Study. Circulation 2023, 147(19):1436–1443. https://www.ncbi.nlm.nih.gov/pubmed/37009731
Perez de Isla L, Diaz-Diaz JL, Romero MJ, et al: Characteristics of Coronary Atherosclerosis Related to Plaque Burden Regression During Treatment With Alirocumab: The ARCHITECT Study. Circ Cardiovasc Imaging 2024, 17(1):e016206. https://www.ncbi.nlm.nih.gov/pubmed/38205656
Gao F, Li YP, Ma XT, Wang ZJ, Shi DM, Zhou YJ: Effect of Alirocumab on Coronary Calcification in Patients With Coronary Artery Disease. Front Cardiovasc Med 2022, 9:907662. https://www.ncbi.nlm.nih.gov/pubmed/35600486
Otake H, Sugizaki Y, Toba T, et al: Efficacy of alirocumab for reducing plaque vulnerability: Study protocol for ALTAIR, a randomized controlled trial in Japanese patients with coronary artery disease receiving rosuvastatin. J Cardiol 2019, 73(3):228–232. https://www.ncbi.nlm.nih.gov/pubmed/30579806
Sabatine MS, Giugliano RP, Keech AC, et al: Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med 2017, 376(18):1713–1722. https://www.ncbi.nlm.nih.gov/pubmed/28304224
Schwartz GG, Steg PG, Szarek M, et al: Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med 2018, 379(22):2097–2107. https://www.ncbi.nlm.nih.gov/pubmed/30403574
Omori H, Ota H, Hara M, et al: Effect of PCSK-9 Inhibitors on Lipid-Rich Vulnerable Coronary Plaque Assessed by Near-Infrared Spectroscopy. JACC Cardiovasc Imaging 2020, 13(7):1639–1641. https://www.ncbi.nlm.nih.gov/pubmed/32305474
Di Giovanni G, Nicholls SJ: Intensive lipid lowering agents and coronary atherosclerosis: Insights from intravascular imaging. Am J Prev Cardiol 2022, 11:100366. https://www.ncbi.nlm.nih.gov/pubmed/35856069
Di Giovanni G, Kataoka Y, Bubb K, Nelson AJ, Nicholls SJ: Impact of lipid lowering on coronary atherosclerosis moving from the lumen to the artery wall. Atherosclerosis 2023, 367:8–14. https://www.ncbi.nlm.nih.gov/pubmed/36716526
Antoniades C, Antonopoulos AS, Deanfield J: Imaging residual inflammatory cardiovascular risk. Eur Heart J 2020, 41(6):748–758. https://www.ncbi.nlm.nih.gov/pubmed/31317172
Tokgozoglu L, Morrow DA, Nicholls SJ: Great debate: lipid-lowering therapies should be guided by vascular imaging rather than by circulating biomarkers. Eur Heart J 2023, 44(25):2292–2304. https://www.ncbi.nlm.nih.gov/pubmed/37259183. Accessed 28 Jul 2024.
留言 (0)