Lymphotoxin-β promotes breast cancer bone metastasis colonization and osteolytic outgrowth

Esposito, M., Guise, T. & Kang, Y. The biology of bone metastasis. Cold Spring Harb. Perspect. Med. 8, a031252 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, W. et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell 184, 2471–2486.e20 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

Article  CAS  PubMed  Google Scholar 

Zheng, H. et al. Therapeutic antibody targeting tumor- and osteoblastic niche-derived Jagged1 sensitizes bone metastasis to chemotherapy. Cancer Cell 32, 731–747.e6 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, H. et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27, 193–210 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20, 701–714 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin, J. J. et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103, 197–206 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ross, M. H. et al. Bone-induced expression of integrin β3 enables targeted nanotherapy of breast cancer metastases. Cancer Res. 77, 6299–6312 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sethi, N., Dai, X., Winter, C. G. & Kang, Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19, 192–205 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Satcher, R. L. & Zhang, X. H. Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat. Rev. Cancer 22, 85–101 (2022).

Article  CAS  PubMed  Google Scholar 

Massague, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 529, 298–306 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minn, A. J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115, 44–55 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

Article  CAS  PubMed  Google Scholar 

Lelekakis, M. et al. A novel orthotopic model of breast cancer metastasis to bone. Clin. Exp. Metastasis 17, 163–170 (1999).

Article  CAS  PubMed  Google Scholar 

Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

Article  CAS  PubMed  Google Scholar 

Wang, X. L., He, Y., Zhang, Q. M., Ren, X. W. & Zhang, Z. M. Direct comparative analyses of 10X Genomics chromium and Smart-seq2. Genom. Proteom. Bioinf. 19, 253–266 (2021).

Article  Google Scholar 

Reid, J. E. & Wernisch, L. Pseudotime estimation: deconfounding single cell time series. Bioinformatics 32, 2973–2980 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jolly, M. K., Ware, K. E., Gilja, S., Somarelli, J. A. & Levine, H. EMT and MET: necessary or permissive for metastasis? Mol. Oncol. 11, 755–769 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial–mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

Article  CAS  PubMed  Google Scholar 

Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lanczky, A. & Gyorffy, B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J. Med. Internet Res. 23, e27633 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Rose, A. A. et al. Osteoactivin promotes breast cancer metastasis to bone. Mol. Cancer Res. 5, 1001–1014 (2007).

Article  CAS  PubMed  Google Scholar 

Maric, G., Rose, A. A., Annis, M. G. & Siegel, P. M. Glycoprotein non-metastatic b (GPNMB): a metastatic mediator and emerging therapeutic target in cancer. Onco Targets Ther. 6, 839–852 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Tang, X. et al. GPR116, an adhesion G-protein-coupled receptor, promotes breast cancer metastasis via the Gαq-p63RhoGEF-Rho GTPase pathway. Cancer Res. 73, 6206–6218 (2013).

Article  CAS  PubMed  Google Scholar 

Lu, T. T. & Browning, J. L. Role of the lymphotoxin/LIGHT system in the development and maintenance of reticular networks and vasculature in lymphoid tissues. Front. Immunol. 5, 47 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Haybaeck, J. et al. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 16, 295–308 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bauer, J. et al. Lymphotoxin, NF-kB, and cancer: the dark side of cytokines. Dig. Dis. 30, 453–468 (2012).

Article  PubMed  Google Scholar 

Das, R. et al. Lymphotoxin-β receptor–NIK signaling induces alternative RELB/NF-κB2 activation to promote metastatic gene expression and cell migration in head and neck cancer. Mol. Carcinog. 58, 411–425 (2019).

留言 (0)

沒有登入
gif