Plasma lipidomics in early APP/PS1 female mouse model and its relationship with brain: Is it affected by the estrous cycle?

Durmugier J, Sabia S. Epidemiology of Alzheimer’s disease: latest trends. Rev Prat. 2020;70:149–51.

Google Scholar 

World Health Organization. Dementia. 2022 [cited 2022 Oct 19]. Available from: https://www.who.int/news-room/fact-sheets/detail/dementia

Beam CR, Kaneshiro C, Jang JY, Reynolds CA, Pedersen NL, Gatz M. Differences between women and men in incidence rates of dementia and Alzheimer’s disease. J Alzheimer’s Dis. 2018;64:1077–83. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-180141.

Article  Google Scholar 

Viña J, Lloret A. Why women have more Alzheimer’s disease than men: gender and mitochondrial toxicity of amyloid-β peptide. Zhu X, Beal MF, Wang X, Perry G, Smith MA, editors. J Alzheimer’s Dis. 2010;20:S527-33. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-2010-100501.

Article  Google Scholar 

Mielke MM, Ferretti MT, Iulita MF, Hayden K, Khachaturian AS. Sex and gender in Alzheimer’s disease – Does it matter? Alzheimer’s Dement. 2018;14:1101–3. Available from: https://alz-journals.onlinelibrary.wiley.com/doi/10.1016/j.jalz.2018.08.003.

Article  Google Scholar 

Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2021;17:327–406.

Mosconi L, Berti V, Quinn C, McHugh P, Petrongolo G, Varsavsky I, et al. Sex differences in Alzheimer risk. Neurology. 2017;89:1382–90. Available from: https://www.neurology.org/doi/10.1212/WNL.0000000000004425.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rocca WA, Mielke MM, Vemuri P, Miller VM. Sex and gender differences in the causes of dementia: A narrative review. Maturitas. 2014;79:196–201. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378512214001601.

Article  PubMed  PubMed Central  Google Scholar 

Mauvais-Jarvis F, Arnold AP, Reue K. A guide for the design of pre-clinical studies on sex differences in metabolism. Cell Metab. 2017;25:1216–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1550413117302863.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castro-Aldrete L, Moser MV, Putignano G, Ferretti MT, Schumacher Dimech A, Santuccione Chadha A. Sex and gender considerations in Alzheimer’s disease: The Women’s Brain Project contribution. Front Aging Neurosci. 2023;15. Available from: https://www.frontiersin.org/articles/10.3389/fnagi.2023.1105620/full

Karp NA, Reavey N. Sex bias in preclinical research and an exploration of how to change the status quo. Br J Pharmacol. 2019;176:4107–18. Available from: https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/bph.14539.

Article  CAS  PubMed  Google Scholar 

Rhea EM, Banks WA. Interactions of Lipids, Lipoproteins, and Apolipoproteins with the Blood-Brain Barrier. Pharm Res. 2021;38:1469–75. Available from: https://link.springer.com/10.1007/s11095-021-03098-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood-brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant. 2007;16:285–99. Available from: http://journals.sagepub.com/doi/10.3727/000000007783464731.

Article  PubMed  Google Scholar 

Takechi R, Galloway S, Pallebage-Gamarallage MMS, Lam V, Mamo JCL. Dietary fats, cerebrovasculature integrity and Alzheimer’s disease risk. Prog Lipid Res. 2010;49:159–70. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163782709000563.

Article  CAS  PubMed  Google Scholar 

Hane FT, Robinson M, Lee BY, Bai O, Leonenko Z, Albert MS. Recent progress in Alzheimer’s disease research, part 3: diagnosis and treatment. J Alzheimer’s Dis. 2017;57:645–65. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-160907.

Article  Google Scholar 

Guzman-Martinez L, Maccioni RB, Farías GA, Fuentes P, Navarrete LP. Biomarkers for Alzheimer’s Disease. Curr Alzheimer Res. 2019;16:518–28. Available from: https://www.eurekaselect.com/172184/article.

Article  CAS  PubMed  Google Scholar 

Kao Y-C, Ho P-C, Tu Y-K, Jou I-M, Tsai K-J. Lipids and Alzheimer’s Disease. Int J Mol Sci. 2020;21:1505. Available from: https://www.mdpi.com/1422-0067/21/4/1505.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Li L, Meng F, Yu J, He F, Lin Y, et al. Serum metabolites differentiate amnestic mild cognitive impairment from healthy controls and predict early Alzheimer’s disease via untargeted lipidomics analysis. Front Neurol. 2021;12. Available from: https://www.frontiersin.org/articles/10.3389/fneur.2021.704582/full

Agarwal M, Khan S. Plasma lipids as biomarkers for Alzheimer’s disease: a systematic review. Cureus. 2020; Available from: https://www.cureus.com/articles/44978-plasma-lipids-as-biomarkers-for-alzheimers-disease-a-systematic-review

Chew H, Solomon VA, Fonteh AN. Involvement of Lipids in Alzheimer’s Disease Pathology and Potential Therapies. Front Physiol. 2020;11. https://www.frontiersin.org/article/10.3389/fphys.2020.00598/full

Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014;88:640–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006295213008083.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Thalamuthu A, Mather KA, Crawford J, Ulanova M, Wong MWK, et al. Plasma lipidome is dysregulated in Alzheimer’s disease and is associated with disease risk genes. Transl Psychiatry. 2021;11:344. Available from: https://www.nature.com/articles/s41398-021-01362-2.

Article  PubMed  PubMed Central  Google Scholar 

Proitsi P, Kim M, Whiley L, Simmons A, Sattlecker M, Velayudhan L, et al. Association of blood lipids with Alzheimer’s disease: A comprehensive lipidomics analysis. Alzheimer’s Dement. 2017;13:140–51. Available from: https://alz-journals.onlinelibrary.wiley.com/doi/10.1016/j.jalz.2016.08.003.

Article  Google Scholar 

Ferré-González L, Lloret A, Cháfer-Pericás C. Systematic review of brain and blood lipidomics in Alzheimer’s disease mouse models. Prog Lipid Res. 2023;90:101223. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163782723000139.

Article  PubMed  Google Scholar 

Mielke MM, Haughey NJ, Han D, An Y, Bandaru VVR, Lyketsos CG, et al. The association between plasma ceramides and sphingomyelins and risk of Alzheimer’s disease differs by sex and APOE in the Baltimore longitudinal study of aging. Mielke M, Martinez P, editors. J Alzheimer’s Dis. 2017;60:819–28. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-160925.

Article  CAS  Google Scholar 

Wong MW, Braidy N, Poljak A, Pickford R, Thambisetty M, Sachdev PS. Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers. Alzheimer’s Dement. 2017;13:810–27. Available from: https://alz-journals.onlinelibrary.wiley.com/doi/10.1016/j.jalz.2017.01.008.

Article  Google Scholar 

Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci. 2004;101:2070–5. Available from: https://pnas.org/doi/full/10.1073/pnas.0305799101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Zhou Y, Luo Z, Tang R, Sun Y, He Q, et al. Lipidomic markers for the prediction of progression from mild cognitive impairment to Alzheimer’s disease. FASEB J. 2023;37. Available from: https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202201584RR

Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum Mol Genet. 2004;13:159–70. Available from: https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddh019.

Article  CAS  PubMed  Google Scholar 

Volianskis A, Køstner R, Mølgaard M, Hass S, Jensen MS. Episodic memory deficits are not related to altered glutamatergic synaptic transmission and plasticity in the CA1 hippocampus of the APPswe/PS1ΔE9-deleted transgenic mice model of β-amyloidosis. Neurobiol Aging. 2010;31:1173–87. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0197458008002844.

Article  CAS  PubMed  Google Scholar 

McLean AC, Valenzuela N, Fai S, Bennett SAL. Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J Vis Exp. 2012; Available from: https://app.jove.com/t/4389

Ferré-González L, Balaguer Á, Roca M, Ftara A, Lloret A, Cháfer-Pericás C. Brain areas lipidomics in female transgenic mouse model of Alzheimer’s disease. Sci Rep. 2024;14:870. Available from: https://www.nature.com/articles/s41598-024-51463-3.

Article  PubMed  PubMed Central  Google Scholar 

Alcoriza-Balaguer MI, García-Cañaveras JC, Ripoll-Esteve FJ, Roca M, Lahoz A. LipidMS 3.0: an R-package and a web-based tool for LC-MS/MS data processing and lipid annotation. Borgwardt K, editor. Bioinformatics. 2022;38:4826–8. Available from: https://academic.oup.com/bioinformatics/article/38/20/4826/6675453.

Article  CAS  PubMed  Google Scholar 

Mowbray FI, Fox-Wasylyshyn SM, El-Masri MM. Univariate outliers: a conceptual overview for the nurse researcher. Can J Nurs Res. 2019;51:31–7. Available from: http://journals.sagepub.com/doi/10.1177/0844562118786647.

留言 (0)

沒有登入
gif