Rhythms in lipid droplet content driven by a metabolic oscillator are conserved throughout evolution

Dunlap JC, Loros JJ, Decoursey PJ (2004) Chronobiology: Biological Timekeeping.

Guido ME, Garbarino-Pico E, Contin MA, Valdez DJ, Nieto PS, Verra DM, Acosta-Rodriguez VA, de Zavalía N, Rosenstein RE (2010) Inner retinal circadian clocks and non-visual photoreceptors: Novel players in the circadian system. Progress Neurobiol 92:484–504. https://doi.org/10.1016/J.PNEUROBIO.2010.08.005

Article  Google Scholar 

Guido ME, Monjes NM, Wagner PM, Salvador GA (2022) Circadian regulation and clock-controlled mechanisms of glycerophospholipid metabolism from neuronal cells and tissues to fibroblasts. Mol Neurobiol 59:326–353. https://doi.org/10.1007/S12035-021-02595-4

Article  CAS  PubMed  Google Scholar 

Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol. https://doi.org/10.1016/J.TCB.2013.07.002

Article  PubMed  Google Scholar 

Flanagan A, Bechtold DA, Pot GK, Johnston JD (2021) Chrono-nutrition: from molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J Neurochem. https://doi.org/10.1111/jnc.15246

Article  PubMed  PubMed Central  Google Scholar 

Takahashi JS (2020) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. https://doi.org/10.1038/nrg.2016.150

Article  Google Scholar 

O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469:498–503. https://doi.org/10.1038/nature09702

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget F-Y, Reddy AB, Millar AJ (2011) Circadian rhythms persist without transcription in a eukaryote. Nature. https://doi.org/10.1038/nature09654

Article  PubMed  PubMed Central  Google Scholar 

Li W, Wang Z, Cao J, Dong Y, Chen Y (2023) Perfecting the life clock: the journey from PTO to TTFL. Int J Mol Sci. https://doi.org/10.3390/IJMS24032402

Article  PubMed  PubMed Central  Google Scholar 

Hastings MH, Maywood ES, O’Neill JS (2008) Cellular circadian pacemaking and the role of cytosolic rhythms. Curr Biol 18:805–815. https://doi.org/10.1016/j.cub.2008.07.021

Article  CAS  Google Scholar 

Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Yao X et al (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature. https://doi.org/10.1038/nature11088

Article  PubMed  PubMed Central  Google Scholar 

Ko CH, Yamada YR, Welsh DK, Buhr ED, Liu AC, Zhang EE, Ralph MR, Kay SA, Forger DB, Takahashi JS (2010) Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000513

Article  PubMed  PubMed Central  Google Scholar 

Maywood ES, Chesham JE, O’Brien JA, Hastings MH (2011) A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci USA 108:14306–14311. https://doi.org/10.1073/pnas.1101767108

Article  PubMed  PubMed Central  Google Scholar 

Putker M, Wong DCS, Seinkmane E, Rzechorzek NM, Zeng A, Hoyle NP, Chesham JE et al (2021) Cryptochromes confer robustness, not rhythmicity to circadian timekeeping. EMBO J. https://doi.org/10.15252/EMBJ.2020106745

Article  PubMed  PubMed Central  Google Scholar 

Wagner PM, Sosa LG, Alderete LD, Gorné VG, Salvador G, Pasquaré S, Guido ME (2018) Proliferative glioblastoma cancer cells exhibit persisting temporal control of metabolism and display differential temporal drug susceptibility in chemotherapy. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1152-3

Article  PubMed  Google Scholar 

Wagner PM, Prucca CG, Fabiola FN, Sosa Alderete LG, Caputto BL, Guido ME (2021) Temporal regulation of tumor growth in nocturnal mammals: In vivo studies and chemotherapeutical potential. FASEB J 35:21231. https://doi.org/10.1096/fj.202001753R

Article  CAS  Google Scholar 

Monjes NM, Wagner PM, Guido ME (2022) Disruption of the molecular clock severely affects lipid metabolism in a hepatocellular carcinoma cell model. J Biol Chem. https://doi.org/10.1016/J.JBC.2022.102551

Article  PubMed  PubMed Central  Google Scholar 

Olzmann JA, Carvalho P (2019) Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 20:137–155. https://doi.org/10.1038/s41580-018-0085-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lundquist PK, Shivaiah K-K, Espinoza-Corral R (2020) Lipid droplets throughout the evolutionary tree. Progress Lipid Res. https://doi.org/10.1016/j.plipres.2020.101029

Article  Google Scholar 

Roberts MA, Olzmann JA (2020) Protein quality control and lipid droplet metabolism. Annu Rev Cell Dev Biol. https://doi.org/10.1146/ANNUREV-CELLBIO-031320-101827

Article  PubMed  PubMed Central  Google Scholar 

Bermúdez MA, Balboa MA, Balsinde J (2021) Lipid droplets, phospholipase A2, arachidonic acid, and atherosclerosis. Biomedicines. https://doi.org/10.3390/BIOMEDICINES9121891

Article  PubMed  PubMed Central  Google Scholar 

Zhang W, Linyong X, Zhu L, Liu Y, Yang S, Zhao M (2021) Lipid droplets, the central hub integrating cell metabolism and the immune system. Front Physiol. https://doi.org/10.3389/FPHYS.2021.746749

Article  PubMed  PubMed Central  Google Scholar 

Rinia HA, Burger KNJ, Bonn M, Müller M (2008) Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy. Biophys J 95:4908–4914. https://doi.org/10.1529/BIOPHYSJ.108.137737

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gooley JJ (2016) Circadian regulation of lipid metabolism. Proc Nutr Soc. https://doi.org/10.1017/S0029665116000288

Article  PubMed  Google Scholar 

Luján AM, Sofía F, Smania AM (2017) Draft genome sequence of pseudomonas aeruginosa strain Hex1T isolated from soils contaminated with used lubricating oil in argentina. Genome Announc. https://doi.org/10.1128/genomeA.01473-16

Article  PubMed  PubMed Central  Google Scholar 

Turani O, Hernando G, Corradi J, Bouzat C (2018) Activation of caenorhabditis elegans levamisole-sensitive and mammalian nicotinic receptors by the antiparasitic bephenium. Mol Pharmacol 94:1270–1279. https://doi.org/10.1124/MOL.118.113357

Article  CAS  PubMed  Google Scholar 

Hernando G, Turani O, Bouzat C (2019) Caenorhabditis elegans muscle Cys-loop receptors as novel targets of terpenoids with potential anthelmintic activity. PLoS. https://doi.org/10.1371/JOURNAL.PNTD.0007895

Article  Google Scholar 

van der Linden AM, Beverly M, Kadener S, Rodriguez J, Wasserman S, Rosbash M, Sengupta P (2010) Genome-wide analysis of light- and temperature-entrained circadian transcripts in caenorhabditis elegans. PLOS Biol 8:e1000503

Article  PubMed  PubMed Central  Google Scholar 

Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937

Article  CAS  PubMed  Google Scholar 

Porras MA, Villar MA, Cubitto MA (2017) Novel spectrophotometric technique for rapid determination of extractable PHA using Sudan black dye. J Biotechnol. https://doi.org/10.1016/J.JBIOTEC.2017.06.012

Article  PubMed  Google Scholar 

Porras MA, Villar MA, Cubitto MA (2018) Improved intracellular PHA determinations with novel spectrophotometric quantification methodologies based on Sudan black dye. J Microbiol Methods 148:1–11.

留言 (0)

沒有登入
gif