Identification of PANoptosis-relevant subgroups and predicting signature to evaluate the prognosis and immune landscape of patients with biliary tract cancer

Fabris L, Sato K, Alpini G, Strazzabosco M. The tumor microenvironment in cholangiocarcinoma progression. Hepatology. 2021;73(1):75–85

PubMed  Google Scholar 

Palmieri LJ, Lavolé J, Dermine S, et al. The choice for the optimal therapy in advanced biliary tract cancers: chemotherapy, targeted therapies or immunotherapy. Pharmacol Ther. 2020;210: 107517

PubMed  Google Scholar 

O’Rourke CJ, Munoz-Garrido P, Andersen JB. Molecular targets in cholangiocarcinoma. Hepatology. 2021;73(Suppl 1):62–74

PubMed  Google Scholar 

Gump JM, Thorburn A. Autophagy and apoptosis: what is the connection. Trends Cell Biol. 2011;21(7):387–392

PubMed  PubMed Central  Google Scholar 

Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15(2):81–94

PubMed  PubMed Central  Google Scholar 

Burke PJ. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 2017;3(12):857–870

PubMed  PubMed Central  Google Scholar 

Wang L, Zhu Y, Zhang L, et al. Mechanisms of PANoptosis and relevant small-molecule compounds for fighting diseases. Cell Death Dis. 2023;14(12):851

PubMed  PubMed Central  Google Scholar 

Lu JL, Yu CX, Song LJ. Programmed cell death in hepatic fibrosis: current and perspectives. Cell Death Discov. 2023;9(1):449

PubMed  PubMed Central  Google Scholar 

Zhang HR, Li YP, Shi ZJ, et al. Triptolide induces PANoptosis in macrophages and causes organ injury in mice. Apoptosis. 2023;28(11–12):1646–1665

PubMed  Google Scholar 

Pandeya A, Kanneganti TD. Therapeutic potential of PANoptosis: innate sensors, inflammasomes, and RIPKs in PANoptosomes. Trends Mol Med. 2023;S1471–4914(23):00236–00238

Google Scholar 

Zhou L, Lyu J, Liu F, Su Y, Feng L, Zhang X. Immunogenic PANoptosis-initiated cancer sono-immune reediting nanotherapy by iteratively boosting cancer immunity cycle. Adv Mater. 2023;36(2):e2305361

PubMed  Google Scholar 

Shi X, Gao X, Liu W, et al. Construction of the panoptosis-related gene model and characterization of tumor microenvironment infiltration in hepatocellular carcinoma. Oncol Res. 2023;31(4):569–590

PubMed  PubMed Central  Google Scholar 

Wei Y, Lan C, Yang C, et al. Robust analysis of a novel PANoptosis-related prognostic gene signature model for hepatocellular carcinoma immune infiltration and therapeutic response. Sci Rep. 2023;13(1):14519

PubMed  PubMed Central  Google Scholar 

Song F, Wang CG, Mao JZ, et al. PANoptosis-based molecular subtyping and HPAN-index predicts therapeutic response and survival in hepatocellular carcinoma. Front Immunol. 2023;14:1197152

PubMed  PubMed Central  Google Scholar 

Zhang B, Huang B, Zhang X, et al. PANoptosis-related molecular subtype and prognostic model associated with the immune microenvironment and individualized therapy in pancreatic cancer. Front Oncol. 2023;13:1217654

PubMed  PubMed Central  Google Scholar 

Wei S, Chen Z, Ling X, Zhang W, Jiang L. Comprehensive analysis illustrating the role of PANoptosis-related genes in lung cancer based on bioinformatic algorithms and experiments. Front Pharmacol. 2023;14:1115221

PubMed  PubMed Central  Google Scholar 

Hu Q, Wang R, Zhang J, Xue Q, Ding B. Tumor-associated neutrophils upregulate PANoptosis to foster an immunosuppressive microenvironment of non-small cell lung cancer. Cancer Immunol Immunother. 2023;72(12):4293–4308

PubMed  PubMed Central  Google Scholar 

Zhang C, Xia J, Liu X, et al. Identifying prognostic genes related PANoptosis in lung adenocarcinoma and developing prediction model based on bioinformatics analysis. Sci Rep. 2023;13(1):17956

PubMed  PubMed Central  Google Scholar 

Wang Y, Zhou J, Zhang N, et al. A novel defined PANoptosis-related miRNA signature for predicting the prognosis and immune characteristics in clear cell renal cell carcinoma: a miRNA signature for the prognosis of ccRCC. Int J Mol Sci. 2023;24(11):9392

PubMed  PubMed Central  Google Scholar 

Liu W, Qu C, Wang X. Comprehensive analysis of the role of immune-related PANoptosis lncRNA model in renal clear cell carcinoma based on RNA transcriptome and single-cell sequencing. Oncol Res. 2023;31(4):543–567

PubMed  PubMed Central  Google Scholar 

Malireddi R, Tweedell RE, Kanneganti TD. PANoptosis components, regulation, and implications. Aging (Albany NY). 2020;12(12):11163–11164

PubMed  Google Scholar 

Malireddi R, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: Master Regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol. 2019;9:406

PubMed  PubMed Central  Google Scholar 

Karki R, Sharma BR, Lee E, et al. Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insight. 2020;5(12): e136720

PubMed  PubMed Central  Google Scholar 

Samir P, Malireddi R, Kanneganti TD. The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:238

PubMed  PubMed Central  Google Scholar 

Briard B, Malireddi R, Kanneganti TD. Role of inflammasomes/pyroptosis and PANoptosis during fungal infection. PLoS Pathog. 2021;17(3): e1009358

PubMed  PubMed Central  Google Scholar 

Jiang M, Qi L, Li L, Wu Y, Song D, Li Y. Caspase-8: A key protein of cross-talk signal way in “PANoptosis” in cancer. Int J Cancer. 2021;149(7):1408–1420

PubMed  Google Scholar 

Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti TD. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 2021;597(7876):415–419

PubMed  PubMed Central  Google Scholar 

Place DE, Lee S, Kanneganti TD. PANoptosis in microbial infection. Curr Opin Microbiol. 2021;59:42–49

PubMed  Google Scholar 

Nguyen LN, Kanneganti TD. PANoptosis in viral infection: the missing puzzle piece in the cell death field. J Mol Biol. 2022;434(4): 167249

PubMed  Google Scholar 

Kinoshita M, Kobayashi S, Gotoh K, et al. Heterogeneity of treg/Th17 according to cancer progression and modification in biliary tract cancers via self-producing cytokines. Dig Dis Sci. 2020;65(10):2937–2948

PubMed  Google Scholar 

Shiode Y, Kodama T, Shigeno S, et al. TNF receptor-related factor 3 inactivation promotes the development of intrahepatic cholangiocarcinoma through NF-κB-inducing kinase-mediated hepatocyte transdifferentiation. Hepatology. 2023;77(2):395–410

PubMed  Google Scholar 

Liu ZH, Lian BF, Dong QZ, et al. 2018 Whole-exome mutational and transcriptional landscapes of combined hepatocellular cholangiocarcinoma and intrahepatic cholangiocarcinoma reveal molecular diversity. Biochim Biophys Acta Mol Basis Dis. 1864;6:2360–2368

Google Scholar 

Pan YR, Lai JC, Huang WK, et al. PLK1 and its substrate MISP facilitate intrahepatic cholangiocarcinoma progression by promoting lymphatic invasion and impairing E-cadherin adherens junctions. Cancer Gene Ther. 2024;31(2):322–333

PubMed  Google Scholar 

Lavacchi D, Caliman E, Rossi G, et al. Ivosidenib in IDH1-mutated cholangiocarcinoma: clinical evaluation and future directions. Pharmacol Ther. 2022;237: 108170

PubMed  Google Scholar 

Sapisochin G, Ivanics T, Heimbach J. Liver Transplantation for intrahepatic cholangiocarcinoma: ready for prime time. Hepatology. 2022;75(2):455–472

PubMed  Google Scholar 

Yi X, Li J, Zheng X, et al. Construction of PANoptosis signature: novel target discovery for prostate cancer immunotherapy. Mol Ther Nucleic Acids. 2023;33:376–390

PubMed  PubMed Central  Google Scholar 

Oh S, Lee J, Oh J, et al. Integrated NLRP3, AIM2, NLRC4, pyrin inflammasome activation and assembly drive PANoptosis. Cell Mol Immunol. 2023;20(12):1513–1526

PubMed  Google Scholar 

Wang Y, Pandian N, Han JH, et al. Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method. Cell Mol Life Sci. 2022;79(10):531

PubMed  Google Scholar 

Nicolè L, Sanavia T, Cappellesso R, et al. Necroptosis-driving genes RIPK1, RIPK3 and MLKL-p are associated with intratumoral CD3(+) and CD8(+) T cell density and predict prognosis in hepatocellular carcinoma. J Immunother Cancer. 2022;10(3): e004031

PubMed  PubMed Central  Google Scholar 

Lomphithak T, Akara-Amornthum P, Murakami K, et al. Tumor necroptosis is correlated with a favorable immune cell signature and programmed death-ligand 1 expression in cholangiocarcinoma. Sci Rep. 2021;11(1):11743

PubMed  PubMed Central  Google Scholar 

Song X, Xu H, Wang P, et al. Focal adhesion kinase (FAK) promotes cholangiocarcinoma development and progression via YAP activation. J Hepatol. 2021;75(4):888–899

PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif