Diagnostic and statistical manual of mental disorders: DSM-5™, 5th ed (pp. xliv, 947). (2013). American Psychiatric Publishing, Inc. https://doi.org/10.1176/appi.books.9780890425596.
Chen R, Jiao Y, Herskovits EH. Structural MRI in Autism Spectrum Disorder. Pediatr Res. 2011;69(8):63–8. https://doi.org/10.1203/PDR.0b013e318212c2b3.
Faizo NL. A narrative review of MRI changes correlated to signs and symptoms of autism. Medicine. 2022;101(34):e30059. https://doi.org/10.1097/MD.0000000000030059.
Article CAS PubMed PubMed Central Google Scholar
Rafiee F, Rezvani Habibabadi R, Motaghi M, Yousem DM, Yousem IJ. Brain MRI in Autism Spectrum Disorder: Narrative Review and recent advances. J Magn Reson Imaging. 2022;55(6):1613–24. https://doi.org/10.1002/jmri.27949.
Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldowitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, … Welsh JP. Consensus paper: Pathological role of the cerebellum in autism. The Cerebellum. 2012;11(3):777–807. https://doi.org/10.1007/s12311-012-0355-9.
Wang SS-H, Kloth AD, Badura A. The Cerebellum, sensitive periods, and Autism. Neuron. 2014;83(3):518–32. https://doi.org/10.1016/j.neuron.2014.07.016.
Article CAS PubMed PubMed Central Google Scholar
Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, Reilly SK, Lin L, Fertuzinhos S, Miller JA, Murtha MT, Bichsel C, Niu W, Cotney J, Ercan-Sencicek AG, Gockley J, Gupta AR, Han W, He X, … State MW. (2013). Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155(5): 997–1007. https://doi.org/10.1016/j.cell.2013.10.020.
D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. NeuroImage: Clin. 2015;7:631–9. https://doi.org/10.1016/j.nicl.2015.02.007.
Dadalko OI, Travers BG. Evidence for Brainstem contributions to Autism Spectrum disorders. Front Integr Nuerosci. 2018;12. https://doi.org/10.3389/fnint.2018.00047.
Seif A, Shea C, Schmid S, Stevenson R. A. A systematic review of Brainstem contributions to Autism Spectrum Disorder. Front Integr Nuerosci. 2021;15. https://doi.org/10.3389/fnint.2021.760116.
Genovese A, Butler MG. The Autism Spectrum: behavioral, Psychiatric and Genetic associations. Genes. 2023;14(3). https://doi.org/10.3390/genes14030677.
Hashem S, Nisar S, Bhat AA, Yadav SK, Azeem MW, Bagga P, Fakhro K, Reddy R, Frenneaux MP, Haris M. Genetics of structural and functional brain changes in autism spectrum disorder. Translational Psychiatry. 2020;10(1):1–17. https://doi.org/10.1038/s41398-020-00921-3.
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front NeuroSci. 2023;17. https://doi.org/10.3389/fnins.2023.1172779.
Nisar S, Haris M. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder. Mol Psychiatry. 2023;1–14. https://doi.org/10.1038/s41380-023-02060-9.
Kainer D, Templeton AR, Prates ET, Jacboson D, Allan ERO, Climer S, Garvin MR. Structural variants identified using non-mendelian inheritance patterns advance the mechanistic understanding of autism spectrum disorder. Hum Genet Genomics Adv. 2023;4(1):100150. https://doi.org/10.1016/j.xhgg.2022.100150.
Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, Pallesen J, Agerbo E, Andreassen OA, Anney R, Awashti S, Belliveau R, Bettella F, Buxbaum JD, Bybjerg-Grauholm J, Bækvad-Hansen M, Cerrato F, Chambert K, Christensen JH, … Børglum AD. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics 51(3): 431–444. https://doi.org/10.1038/s41588-019-0344-8.
Martin AR, Daly MJ, Robinson EB, Hyman SE, Neale BM. Predicting Polygenic Risk of Psychiatric disorders. Mol Mech Affect Disturb. 2019;86(2):97–109. https://doi.org/10.1016/j.biopsych.2018.12.015.
Khundrakpam B, Vainik U, Gong J, Al-Sharif N, Bhutani N, Kiar G, Zeighami Y, Kirschner M, Luo C, Dagher A, Evans A. Neural correlates of polygenic risk score for autism spectrum disorders in general population. Brain Commun. 2020;2(2):fcaa092. https://doi.org/10.1093/braincomms/fcaa092.
Article PubMed PubMed Central Google Scholar
Alemany S, Blok E, Jansen PR, Muetzel RL, White T. Brain morphology, autistic traits, and polygenic risk for autism: a population-based neuroimaging study. Autism Res. 2021;14(10):2085–99. https://doi.org/10.1002/aur.2576.
Ranlund S, Rosa MJ, de Jong S, Cole JH, Kyriakopoulos M, Fu CHY, Mehta MA, Dima D. Associations between polygenic risk scores for four psychiatric illnesses and brain structure using multivariate pattern recognition. NeuroImage: Clin. 2018;20:1026–36. https://doi.org/10.1016/j.nicl.2018.10.008.
Traut N, Beggiato A, Bourgeron T, Delorme R, Rondi-Reig L, Paradis A-L, Toro R. Cerebellar volume in Autism: literature Meta-analysis and analysis of the Autism Brain Imaging Data Exchange Cohort. Social Behav Autism. 2018;83(7):579–88. https://doi.org/10.1016/j.biopsych.2017.09.029.
Durkut M, Blok E, Suleri A, White T. The longitudinal bidirectional relationship between autistic traits and brain morphology from childhood to adolescence: a population-based cohort study. Mol Autism. 2022;13(1):31. https://doi.org/10.1186/s13229-022-00504-7.
Article PubMed PubMed Central Google Scholar
Liu J, Yao L, Zhang W, Xiao Y, Liu L, Gao X, Shah C, Li S, Tao B, Gong Q, Lui S. Gray Matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping. European Child Adolescent Psychiatry. 2017;26(8):933–45. https://doi.org/10.1007/s00787-017-0964-4.
Yang Q, Huang P, Li C, Fang P, Zhao N, Nan J, Wang B, Gao W, Cui L-B. Mapping alterations of gray matter volume and white matter integrity in children with autism spectrum disorder: evidence from fMRI findings. NeuroReport. 2018;29(14):1188–92. https://doi.org/10.1097/WNR.0000000000001094.
Pagnozzi AM, Conti E, Calderoni S, Fripp J, Rose SE. A systematic review of structural MRI biomarkers in autism spectrum disorder: a machine learning perspective. Int J Dev Neurosci. 2018;71(1):68–82. https://doi.org/10.1016/j.ijdevneu.2018.08.010.
Webb SJ, Sparks B-F, Friedman SD, Shaw DWW, Giedd J, Dawson G, Dager SR. Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Res: Neuroimaging. 2009;172(1):61–7. https://doi.org/10.1016/j.pscychresns.2008.06.001.
Laidi C, Floris DL, Tillmann J, Elandaloussi Y, Zabihi M, Charman T, Wolfers T, Durston S, Moessnang C, Dell’Acqua F, Ecker C, Loth E, Murphy D, Baron-Cohen S, Buitelaar JK, Marquand AF, Beckmann CF, Frouin V, Leboyer M, … Simonoff E. Cerebellar atypicalities in autism? Brain Development and Communication in Autism Spectrum Disorder 2022;92 (8): 674–682. https://doi.org/10.1016/j.biopsych.2022.05.020.
Fernandez L, Burmester A, Duque JD, Silk TJ, Hyde CE, Kirkovski M, Enticott PG, Caeyenberghs K. Examination of cerebellar Grey-Matter volume in children with neurodevelopmental disorders: a coordinated analysis using the ACAPULCO Algorithm. Cerebellum. 2023;22(6):1243–9. https://doi.org/10.1007/s12311-022-01503-3.
Courchesne E, Campbell K, Solso S. Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res. 2011;1380:138–45. https://doi.org/10.1016/j.brainres.2010.09.101.
Article CAS PubMed Google Scholar
Duerden EG, Mak-Fan KM, Taylor MJ, Roberts SW. Regional differences in grey and white matter in children and adults with autism spectrum disorders: an activation likelihood estimate (ALE) meta-analysis. Autism Res. 2012;5(1):49–66. https://doi.org/10.1002/aur.235.
Ecker C, Bookheimer SY, Murphy DGM. Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol. 2015;14(11):1121–34. https://doi.org/10.1016/S1474-4422(15)00050-2.
Yang X, Si T, Gong Q, Qiu L, Jia Z, Zhou M, Zhao Y, Hu X, Wu M, Zhu H. Brain gray matter alterations and associated demographic profiles in adults with autism spectrum disorder: a meta-analysis of voxel-based morphometry studies. Australian New Z J Psychiatry. 2016;50(8):741–53. https://doi.org/10.1177/0004867415623858.
Lange N, Travers BG, Bigler ED, Prigge MBD, Froehlich AL, Nielsen JA, Cariello AN, Zielinski BA, Anderson JS, Fletcher PT, Alexander AA, Lainhart JE. Longitudinal volumetric brain changes in Autism Spectrum Disorder ages 6–35 years. Autism Res. 2015;8(1):82–93. https://doi.org/10.1002/aur.1427.
Robinson EB, Koenen KC, McCormick MC, Munir K, Hallett V, Happé F, Plomin R, Ronald A. Evidence that autistic traits show the same etiology in the General Population and at the quantitative extremes (5%, 2.5%, and 1%). Arch Gen Psychiatry. 2011;68(11):1113–21. https://doi.org/10.1001/archgenpsychiatry.2011.119.
Article PubMed PubMed Central Google Scholar
Robinson EB, St Pourcain B, Anttila V, Kosmicki JA, Bulik-Sullivan B, Grove J, Maller J, Samocha KE, Sanders SJ, Ripke S, Martin J, Hollegaard MV, Werge T, Hougaard DM, Neale BM, Evans DM, Skuse D, Mortensen PB, Børglum AD, … Daly MJ. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat Genet 2016;48(5):552–555. https://doi.org/10.1038/ng.3529.
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R. UK Biobank: an Open Access Resource for identifying the causes of a wide range of Complex diseases of Middle and Old Age. PLoS Med. 2015;12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779.
Article PubMed PubMed Central Google Scholar
Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51(4):584–91. https://doi.org/10.1038/s41588-019-0379-x.
留言 (0)