Agrawal, S., Jaswal, K., Shiver, A. L., Balecha, H., Patra, T., & Chaba, R. (2017). A genome-wide screen in Escherichia coli reveals that ubiquinone is a key antioxidant for metabolism of long-chain fatty acids. Journal of Biological Chemistry, 292(49), 20086–20099. https://doi.org/10.1074/jbc.M117.806240
Article CAS PubMed PubMed Central Google Scholar
Almeida, A., Faustino, M. A. F., & Tome, J. P. C. (2015). Photodynamic inactivation of bacteria: Finding the effective targets. Future Medicinal Chemistry, 7(10), 1221–1224. https://doi.org/10.4155/Fmc.15.59
Article CAS PubMed Google Scholar
Alves, E., Faustino, M. A., Neves, M. G., Cunha, A., Tome, J., & Almeida, A. (2014). An insight on bacterial cellular targets of photodynamic inactivation. Future Medicinal Chemistry, 6(2), 141–164. https://doi.org/10.4155/fmc.13.211
Article CAS PubMed Google Scholar
Aussel, L., Pierrel, F., Loiseau, L., Lombard, M., Fontecave, M., & Barras, F. (2014). Biosynthesis and physiology of coenzyme Q in bacteria. Biochimica et Biophysica Acta, 1837(7), 1004–1011. https://doi.org/10.1016/j.bbabio.2014.01.015
Article CAS PubMed Google Scholar
Barrientos-Moreno, L., Molina-Henares, M. A., Pastor-García, M., Ramos-González, M. I., & Espinosa-Urgel, M. (2019). Arginine biosynthesis modulates pyoverdine production and release in pseudomonas putida as part of the mechanism of adaptation to oxidative stress. Journal of Bacteriology. https://doi.org/10.1128/jb.00454-19
Article PubMed PubMed Central Google Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A Practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Calloni, G., Chen, T., Schermann, S. M., Chang, H.-C., Genevaux, P., Agostini, F., et al. (2012). DnaK functions as a central hub in the E. coli chaperone network. Cell Reports, 1(3), 251–264. https://doi.org/10.1016/j.celrep.2011.12.007
Article CAS PubMed Google Scholar
Chou, J., Greenberg, J., & Demple, B. (1993). Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: Positive control of the micF antisense RNA by the soxRS locus. Journal of Bacteriology, 175(4), 1026–1031.
Article CAS PubMed PubMed Central Google Scholar
Cieplik, F., Deng, D. M., Crielaard, W., Buchalla, W., Hellwig, E., Al-Ahmad, A., et al. (2018). Antimicrobial photodynamic therapy - what we know and what we don’t. Critical Reviews in Microbiology, 44(5), 571–589.
Article CAS PubMed Google Scholar
Cieplik, F., Spath, A., Tabenski, L., Hiller, K. A., Baumler, W., & Maisch, T. (2013). Photosensitizer SAPYR: Super antimicrobial photodynamic reduction of Enterococcus faecalis in mono- and polyspecies biofilms. International Journal of Medical Microbiology, 303, 41–41.
Cieplik, F., Wimmer, F., Muehler, D., Thurnheer, T., Belibasakis, G. N., Hiller, K. A., et al. (2018). Phenalen-1-one-mediated antimicrobial photodynamic therapy and chlorhexidine applied to a novel caries biofilm model. Caries Research, 52(6), 447–453.
Article CAS PubMed Google Scholar
De Biase, D., Tramonti, A., Bossa, F., & Visca, P. (1999). The response to stationary-phase stress conditions in Escherichia coli: Role and regulation of the glutamic acid decarboxylase system. Molecular Microbiology, 32(6), 1198–1211. https://doi.org/10.1046/j.1365-2958.1999.01430.x
Doi, H., Hoshino, Y., Nakase, K., & Usuda, Y. (2014). Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli. Applied Microbiology and Biotechnology, 98(2), 629–639. https://doi.org/10.1007/s00253-013-5327-6
Article CAS PubMed Google Scholar
Dorel, C., Lejeune, P., & Rodrigue, A. (2006). The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Research in Microbiology, 157(4), 306–314. https://doi.org/10.1016/j.resmic.2005.12.003
Article CAS PubMed Google Scholar
Dorel, C., Vidal, O., Prigent-Combaret, C., Vallet, I., & Lejeune, P. (1999). Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiology Letters, 178(1), 169–175. https://doi.org/10.1111/j.1574-6968.1999.tb13774.x
Drees, J. C., Lusetti, S. L., & Cox, M. M. (2004). Inhibition of RecA protein by the Escherichia coli RecX protein: Modulation by the RecA C terminus and filament functional state. Journal of Biological Chemistry, 279(51), 52991–52997. https://doi.org/10.1074/jbc.M409050200
Article CAS PubMed Google Scholar
Gajiwala, K. S., & Burley, S. K. (2000). HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. Journal of Molecular Biology, 295(3), 605–612. https://doi.org/10.1006/jmbi.1999.3347
Article CAS PubMed Google Scholar
Greenberg, J. T., Monach, P., Chou, J. H., Josephy, P. D., & Demple, B. (1990). Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 87(16), 6181–6185. https://doi.org/10.1073/pnas.87.16.6181
Article CAS PubMed PubMed Central Google Scholar
Grinholc, M., Rodziewicz, A., Forys, K., Rapacka-Zdonczyk, A., Kawiak, A., Domachowska, A., et al. (2015). Fine-tuning recA expression in Staphylococcus aureus for antimicrobial photoinactivation: Importance of photo-induced DNA damage in the photoinactivation mechanism. Applied Microbiology and Biotechnology, 99(21), 9161–9176. https://doi.org/10.1007/s00253-015-6863-z
Article CAS PubMed PubMed Central Google Scholar
Hartl, F. U., Bracher, A., & Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475(7356), 324–332.
Article CAS PubMed Google Scholar
Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P., & Minghim, R. (2015). InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics, 16(1), 169. https://doi.org/10.1186/s12859-015-0611-3
Article PubMed PubMed Central Google Scholar
Hews, C.L., Cho, T., Rowley, G., & Raivio, T.L. (2019). Maintaining integrity under stress: envelope stress response regulation of pathogenesis in gram-negative bacteria. Frontiers in Cellular and Infection Microbiology, 9(313). https://doi.org/10.3389/fcimb.2019.00313
Jaswal, K., Shrivastava, M., Roy, D., Agrawal, S., & Chaba, R. (2020). Metabolism of long-chain fatty acids affects disulfide bond formation in Escherichia coli and activates envelope stress response pathways as a combat strategy. PLOS Genetics, 16(10), e1009081. https://doi.org/10.1371/journal.pgen.1009081
Article CAS PubMed PubMed Central Google Scholar
Jozefczuk, S., Klie, S., Catchpole, G., Szymanski, J., Cuadros-Inostroza, A., Steinhauser, D., et al. (2010). Metabolomic and transcriptomic stress response of Escherichia coli. Molecular Systems Biology, 6(1), 364. https://doi.org/10.1038/msb.2010.18
Kamenšek, S., & Žgur-Bertok, D. (2013). Global transcriptional responses to the bacteriocin colicin M in Escherichia coli. BMC Microbiology, 13, 42. https://doi.org/10.1186/1471-2180-13-42
Article CAS PubMed PubMed Central Google Scholar
Kern, R., Malki, A., Abdallah, J., Tagourti, J., & Richarme, G. (2007). Escherichia coli HdeB is an acid stress chaperone. Journal of Bacteriology, 189(2), 603–610. https://doi.org/10.1128/jb.01522-06
Article CAS PubMed Google Scholar
Keseler, I. M., Mackie, A., Santos-Zavaleta, A., Billington, R., Bonavides-Martínez, C., Caspi, R., et al. (2017). The EcoCyc database: Reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Research, 45(D1), D543–D550. https://doi.org/10.1093/nar/gkw1003
Article CAS PubMed Google Scholar
Kreuzer, K. N. (2013). DNA damage responses in prokaryotes: Regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harbor Perspectives in Biology, 5(11), a012674. https://doi.org/10.1101/cshperspect.a012674
Article CAS PubMed PubMed Central Google Scholar
Lee, J., Sperandio, V., Frantz, D. E., Longgood, J., Camilli, A., Phillips, M. A., et al. (2009). An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. Journal of Biological Chemistry, 284(15), 9899–9907. https://doi.org/10.1074/jbc.M900110200
留言 (0)