Stress response in Escherichia coli following sublethal phenalene-1-one mediated antimicrobial photodynamic therapy: an RNA-Seq study

Agrawal, S., Jaswal, K., Shiver, A. L., Balecha, H., Patra, T., & Chaba, R. (2017). A genome-wide screen in Escherichia coli reveals that ubiquinone is a key antioxidant for metabolism of long-chain fatty acids. Journal of Biological Chemistry, 292(49), 20086–20099. https://doi.org/10.1074/jbc.M117.806240

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almeida, A., Faustino, M. A. F., & Tome, J. P. C. (2015). Photodynamic inactivation of bacteria: Finding the effective targets. Future Medicinal Chemistry, 7(10), 1221–1224. https://doi.org/10.4155/Fmc.15.59

Article  CAS  PubMed  Google Scholar 

Alves, E., Faustino, M. A., Neves, M. G., Cunha, A., Tome, J., & Almeida, A. (2014). An insight on bacterial cellular targets of photodynamic inactivation. Future Medicinal Chemistry, 6(2), 141–164. https://doi.org/10.4155/fmc.13.211

Article  CAS  PubMed  Google Scholar 

Aussel, L., Pierrel, F., Loiseau, L., Lombard, M., Fontecave, M., & Barras, F. (2014). Biosynthesis and physiology of coenzyme Q in bacteria. Biochimica et Biophysica Acta, 1837(7), 1004–1011. https://doi.org/10.1016/j.bbabio.2014.01.015

Article  CAS  PubMed  Google Scholar 

Barrientos-Moreno, L., Molina-Henares, M. A., Pastor-García, M., Ramos-González, M. I., & Espinosa-Urgel, M. (2019). Arginine biosynthesis modulates pyoverdine production and release in pseudomonas putida as part of the mechanism of adaptation to oxidative stress. Journal of Bacteriology. https://doi.org/10.1128/jb.00454-19

Article  PubMed  PubMed Central  Google Scholar 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A Practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Article  Google Scholar 

Calloni, G., Chen, T., Schermann, S. M., Chang, H.-C., Genevaux, P., Agostini, F., et al. (2012). DnaK functions as a central hub in the E. coli chaperone network. Cell Reports, 1(3), 251–264. https://doi.org/10.1016/j.celrep.2011.12.007

Article  CAS  PubMed  Google Scholar 

Chou, J., Greenberg, J., & Demple, B. (1993). Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: Positive control of the micF antisense RNA by the soxRS locus. Journal of Bacteriology, 175(4), 1026–1031.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cieplik, F., Deng, D. M., Crielaard, W., Buchalla, W., Hellwig, E., Al-Ahmad, A., et al. (2018). Antimicrobial photodynamic therapy - what we know and what we don’t. Critical Reviews in Microbiology, 44(5), 571–589.

Article  CAS  PubMed  Google Scholar 

Cieplik, F., Spath, A., Tabenski, L., Hiller, K. A., Baumler, W., & Maisch, T. (2013). Photosensitizer SAPYR: Super antimicrobial photodynamic reduction of Enterococcus faecalis in mono- and polyspecies biofilms. International Journal of Medical Microbiology, 303, 41–41.

Google Scholar 

Cieplik, F., Wimmer, F., Muehler, D., Thurnheer, T., Belibasakis, G. N., Hiller, K. A., et al. (2018). Phenalen-1-one-mediated antimicrobial photodynamic therapy and chlorhexidine applied to a novel caries biofilm model. Caries Research, 52(6), 447–453.

Article  CAS  PubMed  Google Scholar 

De Biase, D., Tramonti, A., Bossa, F., & Visca, P. (1999). The response to stationary-phase stress conditions in Escherichia coli: Role and regulation of the glutamic acid decarboxylase system. Molecular Microbiology, 32(6), 1198–1211. https://doi.org/10.1046/j.1365-2958.1999.01430.x

Article  PubMed  Google Scholar 

Doi, H., Hoshino, Y., Nakase, K., & Usuda, Y. (2014). Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli. Applied Microbiology and Biotechnology, 98(2), 629–639. https://doi.org/10.1007/s00253-013-5327-6

Article  CAS  PubMed  Google Scholar 

Dorel, C., Lejeune, P., & Rodrigue, A. (2006). The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Research in Microbiology, 157(4), 306–314. https://doi.org/10.1016/j.resmic.2005.12.003

Article  CAS  PubMed  Google Scholar 

Dorel, C., Vidal, O., Prigent-Combaret, C., Vallet, I., & Lejeune, P. (1999). Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiology Letters, 178(1), 169–175. https://doi.org/10.1111/j.1574-6968.1999.tb13774.x

Drees, J. C., Lusetti, S. L., & Cox, M. M. (2004). Inhibition of RecA protein by the Escherichia coli RecX protein: Modulation by the RecA C terminus and filament functional state. Journal of Biological Chemistry, 279(51), 52991–52997. https://doi.org/10.1074/jbc.M409050200

Article  CAS  PubMed  Google Scholar 

Gajiwala, K. S., & Burley, S. K. (2000). HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. Journal of Molecular Biology, 295(3), 605–612. https://doi.org/10.1006/jmbi.1999.3347

Article  CAS  PubMed  Google Scholar 

Greenberg, J. T., Monach, P., Chou, J. H., Josephy, P. D., & Demple, B. (1990). Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 87(16), 6181–6185. https://doi.org/10.1073/pnas.87.16.6181

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grinholc, M., Rodziewicz, A., Forys, K., Rapacka-Zdonczyk, A., Kawiak, A., Domachowska, A., et al. (2015). Fine-tuning recA expression in Staphylococcus aureus for antimicrobial photoinactivation: Importance of photo-induced DNA damage in the photoinactivation mechanism. Applied Microbiology and Biotechnology, 99(21), 9161–9176. https://doi.org/10.1007/s00253-015-6863-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartl, F. U., Bracher, A., & Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475(7356), 324–332.

Article  CAS  PubMed  Google Scholar 

Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P., & Minghim, R. (2015). InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics, 16(1), 169. https://doi.org/10.1186/s12859-015-0611-3

Article  PubMed  PubMed Central  Google Scholar 

Hews, C.L., Cho, T., Rowley, G., & Raivio, T.L. (2019). Maintaining integrity under stress: envelope stress response regulation of pathogenesis in gram-negative bacteria. Frontiers in Cellular and Infection Microbiology, 9(313). https://doi.org/10.3389/fcimb.2019.00313

Jaswal, K., Shrivastava, M., Roy, D., Agrawal, S., & Chaba, R. (2020). Metabolism of long-chain fatty acids affects disulfide bond formation in Escherichia coli and activates envelope stress response pathways as a combat strategy. PLOS Genetics, 16(10), e1009081. https://doi.org/10.1371/journal.pgen.1009081

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jozefczuk, S., Klie, S., Catchpole, G., Szymanski, J., Cuadros-Inostroza, A., Steinhauser, D., et al. (2010). Metabolomic and transcriptomic stress response of Escherichia coli. Molecular Systems Biology, 6(1), 364. https://doi.org/10.1038/msb.2010.18

Kamenšek, S., & Žgur-Bertok, D. (2013). Global transcriptional responses to the bacteriocin colicin M in Escherichia coli. BMC Microbiology, 13, 42. https://doi.org/10.1186/1471-2180-13-42

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kern, R., Malki, A., Abdallah, J., Tagourti, J., & Richarme, G. (2007). Escherichia coli HdeB is an acid stress chaperone. Journal of Bacteriology, 189(2), 603–610. https://doi.org/10.1128/jb.01522-06

Article  CAS  PubMed  Google Scholar 

Keseler, I. M., Mackie, A., Santos-Zavaleta, A., Billington, R., Bonavides-Martínez, C., Caspi, R., et al. (2017). The EcoCyc database: Reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Research, 45(D1), D543–D550. https://doi.org/10.1093/nar/gkw1003

Article  CAS  PubMed  Google Scholar 

Kreuzer, K. N. (2013). DNA damage responses in prokaryotes: Regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harbor Perspectives in Biology, 5(11), a012674. https://doi.org/10.1101/cshperspect.a012674

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, J., Sperandio, V., Frantz, D. E., Longgood, J., Camilli, A., Phillips, M. A., et al. (2009). An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. Journal of Biological Chemistry, 284(15), 9899–9907. https://doi.org/10.1074/jbc.M900110200

Article 

留言 (0)

沒有登入
gif