Far-infrared irradiation inhibits proliferation of human upper airway epithelial cells via protein phosphatase 2A-promoted dephosphorylation of p70 S6 kinase

Vatansever, F., & Hamblin, M. R. (2012). Far infrared radiation (FIR): Its biological effects and medical applications. Photonics Lasers Med, 4, 255–266. https://doi.org/10.1515/plm-2012-0034

Article  PubMed  PubMed Central  Google Scholar 

Hsu, Y. H., Chen, Y. C., Chen, T. H., Sue, Y. M., Cheng, T. H., Chen, J. R., & Chen, C. H. (2012). Far-infrared therapy induces the nuclear translocation of PLZF which inhibits VEGF-induced proliferation in human umbilical vein endothelial cells. PLoS ONE, 7, e30674. https://doi.org/10.1371/journal.pone.0030674

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beever, R. (2009). Far-infrared saunas for treatment of cardiovascular risk factors: Summary of published evidence. Canadian Family Physician, 55, 691–696.

PubMed  PubMed Central  Google Scholar 

Ishibashi, J., Yamashita, K., Ishikawa, T., Hosokawa, H., Sumida, K., Nagayama, M., & Kitamura, S. (2008). The effects inhibiting the proliferation of cancer cells by far-infrared radiation (FIR) are controlled by the basal expression level of heat shock protein (HSP) 70A. Medical Oncology, 25, 229–237. https://doi.org/10.1007/s12032-007-9020-4

Article  CAS  PubMed  Google Scholar 

Hattori, T., Kokura, S., Okuda, T., Okayama, T., Takagi, T., Handa, O., Naito, Y., Yoshida, N., & Yoshikawa, T. (2007). Antitumor effect of whole body hyperthermia with alpha-galactosylceramide in a subcutaneous tumor model of colon cancer. International Journal of Hyperthermia, 23, 591–598. https://doi.org/10.1080/02656730701708328

Article  CAS  PubMed  Google Scholar 

Tam, A., Wadsworth, S., Dorscheid, D., Man, S. F., & Sin, D. D. (2011). The airway epithelium: More than just a structural barrier. Therapeutic Advances in Respiratory Disease, 5, 255–273. https://doi.org/10.1177/1753465810396539

Article  PubMed  Google Scholar 

Rogers, D. F. (2007). Physiology of airway mucus secretion and pathophysiology of hypersecretion. Respiratory Care, 52, 1134–1146.

PubMed  Google Scholar 

Wang, Y., Bai, C., Li, K., Adler, K. B., & Wang, X. (2008). Role of airway epithelial cells in development of asthma and allergic rhinitis. Respiratory Medicine, 102, 949–955. https://doi.org/10.1016/j.rmed.2008.01.017

Article  PubMed  Google Scholar 

Ha, E. V., & Rogers, D. F. (2016). Novel therapies to inhibit mucus synthesis and secretion in airway hypersecretory diseases. Pharmacology, 97, 84–100. https://doi.org/10.1159/000442794

Article  CAS  PubMed  Google Scholar 

Maestrelli, P., Saetta, M., Mapp, C. E., & Fabbri, L. M. (2001). Remodeling in response to infection and injury. Airway inflammation and hypersecretion of mucus in smoking subjects with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 164, S76-80. https://doi.org/10.1164/ajrccm.164.supplement_2.2106067

Article  CAS  PubMed  Google Scholar 

Krajina, Z., & Zirdum, A. (1987). Histochemical analysis of nasal polyps. Acta Oto-Laryngologica, 103, 435–440.

CAS  PubMed  Google Scholar 

Norlander, T., Fukami, M., Westrin, K. M., Stierna, P., & Carlsöö, B. (1993). Formation of mucosal polyps in the nasal and maxillary sinus cavities by infection. Otolaryngology - Head and Neck Surgery, 109, 522–529. https://doi.org/10.1177/019459989310900322

Article  CAS  PubMed  Google Scholar 

Fukami, M., Norlander, T., Stierna, P., Westrin, K. M., Carlsöö, B., & Nord, C. E. (1993). Mucosal pathology of the nose and sinuses: A study in experimental maxillary sinusitis in rabbits induced by Streptococcus pneumoniae, Bacteroides fragilis, and Staphylococcus aureus. American Journal of Rhinology, 7, 125–132.

Article  Google Scholar 

Haberal, I., & Corey, J. P. (2003). The role of leukotrienes in nasal allergy. Otolaryngology - Head and Neck Surgery, 129, 274–279. https://doi.org/10.1016/s0194-5998(03)00601-6

Article  PubMed  Google Scholar 

Skoner, D. P. (2000). Complications of allergic rhinitis. The Journal of Allergy and Clinical Immunology, 105, S605-609. https://doi.org/10.1067/mai.2000.106150

Article  CAS  PubMed  Google Scholar 

Magnuson, B., Ekim, B., & Fingar, D. C. (2012). Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. The Biochemical Journal, 441, 1–21. https://doi.org/10.1042/BJ20110892

Article  CAS  PubMed  Google Scholar 

Garcia, D., & Shaw, R. J. (2017). AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Molecular Cell, 66, 789–800. https://doi.org/10.1016/j.molcel.2017.05.032

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jastrzebski, K., Hannan, K. M., Tchoubrieva, E. B., Hannan, R. D., & Pearson, R. B. (2007). Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors, 25, 209–226. https://doi.org/10.1080/08977190701779101

Article  CAS  PubMed  Google Scholar 

Osman, I., & Segar, L. (2016). Pioglitazone, a PPARgamma agonist, attenuates PDGF-induced vascular smooth muscle cell proliferation through AMPK-dependent and AMPK-independent inhibition of mTOR/p70S6K and ERK signaling. Biochemical Pharmacology, 101, 54–70. https://doi.org/10.1016/j.bcp.2015.11.026

Article  CAS  PubMed  Google Scholar 

Parrott, L. A., & Templeton, D. J. (1999). Osmotic stress inhibits p70/85 S6 kinase through activation of a protein phosphatase. Journal of Biological Chemistry, 274, 24731–24736. https://doi.org/10.1074/jbc.274.35.24731

Article  CAS  PubMed  Google Scholar 

Peterson, R. T., Desai, B. N., Hardwick, J. S., & Schreiber, S. L. (1999). Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc Natl Acad Sci U S A, 96, 4438–4442. https://doi.org/10.1073/pnas.96.8.4438

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song, S. Y., Na, H. G., Kwak, S. Y., Choi, Y. S., Bae, C. H., & Kim, Y. D. (2021). Changes in mucin production in human airway epithelial cells after exposure to electronic cigarette vapor with or without nicotine. Clin Exp Otorhinolaryngol, 14, 303–311. https://doi.org/10.21053/ceo.2020.01907

Article  CAS  PubMed  Google Scholar 

Cho, D. H., Lee, H. J., Lee, J. Y., Park, J. H., & Jo, I. (2021). Far-infrared irradiation inhibits breast cancer cell proliferation independently of DNA damage through increased nuclear Ca(2+)/calmodulin binding modulated-activation of checkpoint kinase 2. Journal of Photochemistry and Photobiology B: Biology, 219, 112188. https://doi.org/10.1016/j.jphotobiol.2021.112188

Article  CAS  PubMed  Google Scholar 

Hwang, Y. J., Park, J. H., & Cho, D. H. (2023). Far-infrared irradiation decreases proliferation in basal and PDGF-stimulated VSMCs through AMPK-mediated inhibition of mTOR/p70S6K signaling axis. Journal of Korean Medical Science, 38, e335. https://doi.org/10.3346/jkms.2023.38.e335

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hwang, S., Lee, D. H., Lee, I. K., Park, Y. M., & Jo, I. (2014). Far-infrared radiation inhibits proliferation, migration, and angiogenesis of human umbilical vein endothelial cells by suppressing secretory clusterin levels. Cancer Letters, 346, 74–83. https://doi.org/10.1016/j.canlet.2013.12.011

Article  CAS  PubMed  Google Scholar 

Lee, H., Hwang, Y. J., Park, J. H., & Cho, D. H. (2022). Valproic acid decreases vascular smooth muscle cell proliferation via protein phosphatase 2A-mediated p70 S6 kinase inhibition. Biochemical and Biophysical Research Communications, 606, 94–99. https://doi.org/10.1016/j.bbrc.2022.03.100

Article  CAS  PubMed  Google Scholar 

Hwang, Y. J., Park, J. H., & Cho, D. H. (2020). Activation of AMPK by telmisartan decreases basal and PDGF-stimulated VSMC proliferation via Inhibiting the mTOR/p70S6K Signaling Axis. Journal of Korean Medical Science, 35, e289. https://doi.org/10.3346/jkms.2020.35.e289

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janssens, V., & Goris, J. (2001). Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemical Journal, 353, 417–439.

Article  CAS 

留言 (0)

沒有登入
gif