Bednarski, P. J., Mackay, F. S., & Sadler, P. J. (2007). Photoactivatable platinum complexes. Anti-Cancer Agents in Medicinal Chemistry, 7, 75–93. https://doi.org/10.2174/187152007779314053
Gurruchaga-Pereda, J., Martínez, A., Terenzi, A., & Salassa, L. (2019). Anticancer platinum agents and light. Inorganica Chimica Acta, 495, 118981. https://doi.org/10.1016/j.ica.2019.118981
Brindell, M., Kulis, E., Elmroth, S. K. C., Urbanska, K., & Stochel, G. (2005). Light-induced anticancer activity of [RuCl2(DMSO)4] complexes. Journal of Medicinal Chemistry, 48, 7298–7304. https://doi.org/10.1021/jm0502992
Cameron, R. E., & Bocarsly, A. B. (1985). Photoactivated oxidation by alcohols by oxygen. Journal of the American Chemical Society, 107, 6116–6117. https://doi.org/10.1021/ja00307a054
Sakamoto, M., Fujitsuka, M., & Majima, T. (2009). Light as a construction tool of metal nanoparticles: Synthesis and mechanism. Journal of Photochemistry and Photobiology, C: Photochemistry Reviews, 10, 33–56. https://doi.org/10.1016/j.jphotochemrev.2008.11.002
Tjoa, V., Chua, J., Pramana, S. S., Wei, J., Mhaisalkar, S. G., & Mathews, N. (2012). Facile photochemical synthesis of graphene-Pt nanoparticle composite for counter electrode in dye sensitized solar cell. ACS Applied Materials & Interfaces, 4, 3447–3452. https://doi.org/10.1021/am300437g
Kish, H., & Macyk, W. (2002). Visible-light photocatalysis by modified titania. ChemPhysChem, 3, 399–400.
Mahlamvan, F., & Kriek, R. J. (2014). Photocatalytic reduction of platinum(II and IV) from their chloro complexes in a titanium dioxide suspension in the absence of an organic sacrificial reducing agent. Applied Catalysis B: Environmental, 148–149, 387–393. https://doi.org/10.1016/j.apcatb.2013.11.011
Harris, C., & Kamat, P. V. (2010). Photocatalytic events of CdSe quantum dots in confined media electrodic behavior of coupled platinum nanoparticles. ACS Nano, 4, 7321–7330. https://doi.org/10.1021/nn102564x
Cramer, C. J., & Thrular, D. G. (2009). Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics: PCCP, 11, 10757. https://doi.org/10.1039/B907148B
Neese, F. (2009). Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling. Coordination Chemistry Reviews, 253, 526. https://doi.org/10.1016/j.ccr.2008.05.014
Sameera, W. M. C., & Maseras, F. (2012). Transition metal catalysis by density functional theory and density functional theory/molecular mechanics. Wiley Interdisciplinary Reviews: Computational Molecular Science., 2, 375–385. https://doi.org/10.1002/wcms.1092
Daniel, C. (2014). Photochemistry and photophysics of transition metal complexes: Quantum chemistry. Coordination Chemistry Reviews, 282–283, 19–32. https://doi.org/10.1016/j.ccr.2014.05.023
Rensing, C., Ehrler, O. T., Yang, J.-P., Unterreiner, A.-N., & Kappes, M. M. (2009). Photodissociation dynamics of IrBr62−dianions by time-resolved photoelectron spectroscopy. The Journal of Chemical Physics, 130, 234306. https://doi.org/10.1063/1.3148377
I.L. Zheldakov, Ultrafast Photophysics and Photochemistry of Hexacoordinated Bromides of Pt(IV), Os(IV), and Ir(IV) in the Condensed Phase Studied by Femtosecond Pump-Probe Spectroscopy. Ph. D. Thesis. 2010, Bowling Green State University.
Zheldakov, I. L., Ryazantsev, M. N., & Tarnovsky, A. N. (2011). Wavepacket motion via a conical intersection in the photochemistry of aqueous transition-metal dianions. Journal of Physical Chemistry Letters, 2, 1540–1545. https://doi.org/10.1021/jz200239b
Glebov, E. M., Kolomeets, A. V., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Tkachenko, N. V., & Lemmetyinen, H. (2013). Chain processes in the photochemistry of PtIV halide complexes in aqueous solutions. Russian Chemical Bulletin, 62, 1540–1548. https://doi.org/10.1007/s11172-013-0221-z
Glebov, E. M., Pozdnyakov, I. P., Plyusnin, V. F., & Khmelinskii, I. (2015). Primary reactions in photochemistry of hexahalide complexes of platinum group metals: a minireview. Journal of Photochemistry and Photobiology, C: Photochemistry Reviews, 24, 1–15. https://doi.org/10.1016/j.jphotochemrev.2015.05.003
Matveeva, S. G., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Mereshchenko, A. S., Melnikov, A. A., Chekalin, S. V., & Glebov, E. M. (2016). Primary photochemical processes for PtCl62- complex in acetonitrile solutions. Journal of Photochemistry and Photobiology, A: Chemistry, 325, 13–21. https://doi.org/10.1016/j.jphotochem.2016.03.027
Glebov, E. M., Pozdnyakov, I. P., Matveeva, S. G., Melnikov, A. A., Chekalin, S. V., Rogozina, M. V., Yudanov, V. V., Grivin, V. P., & Plyusnin, V. F. (2017). Primary photophysical and photochemical processes for OsCl62- complex in aqueous solutions. Photochemical & Photobiological Sciences, 16, 220–227. https://doi.org/10.1039/C6PP00382F
Rogozina, M. V., Yudanov, V. V., Fedunov, R. G., Pozdnyakov, I. P., Melnikov, A. A., Chekalin, S. V., & Glebov, E. M. (2018). Short-lived intermediates in photochemistry of OsCl62- complex in aqueous solutions. Photochemical & Photobiological Sciences, 17, 18–26. https://doi.org/10.1039/c7pp00299h
Rogozina, M. V., Matveeva, S. G., Glebov, E. M., & Fedunov, R. G. (2019). Quantum chemistry of OsCl62- photoaquation products and the reaction scheme. Photochemical & Photobiological Sciences, 18, 1122–1129. https://doi.org/10.1039/c8pp00553b
Matveev, S. M., Budkina, D. S., Zheldakov, I. L., Phelan, M. R., Hicks, Ch. M., & Tarnovsky, A. N. (2019). Femtosecond dynamics of metal-centered and ligand-to-metal charge-transfer (t2g-based) electronic excited states in various solvents: A comprehensive study of IrBr62−. The Journal of Chemical Physics, 150, 054302. https://doi.org/10.1063/1.5079754
Gomez, S., Heindl, M., Szabadi, A., & Gonzalez, L. (2019). From surface hopping to quantum dynamics and back. Finding essential electronic and nuclear degrees of freedom and optimal surface hopping parameters. The Journal of Physical Chemistry A, 123, 8321–8332. https://doi.org/10.1021/acs.jpca.9b06103
Glebov, E. M., Matveeva, S. G., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., Romanova, T. E., Melnikov, A. A., Chekalin, S. V., & Fedunov, R. G. (2020). Photochemistry of hexachloroosmate(IV) in ethanol. Photochemical & Photobiological Sciences, 19, 1569–1579. https://doi.org/10.1039/D0PP00244E
Budkina, D. S., Gemeda, F. T., Matveev, S. M., & Tarnovsky, A. N. (2020). Ultrafast dynamics in LMCT and intraconfigurational excited states in hexahaloiridates(iv), models for heavy transition metal complexes and building blocks of quantum correlated materials. Physical Chemistry Chemical Physics: PCCP, 22, 17351–17364. https://doi.org/10.1039/d0cp00438c
Glebov, E. M., & Plyusnin, V. F. (2021). On the cause of solvent effect in PtIVCl62- photochemistry. High Energy Chemistry, 55, 203–211. https://doi.org/10.31857/S0023119321030037
Glebov, E. M. (2022). Femtochemistry methods for studying the photophysics and photochemistry of halide complexes of platinum metals. Russian Chemical Bulletin, 71, 858–877. https://doi.org/10.1007/s11172-022-3486-2
Wright, R. C., & Laurence, G. S. (1972). Production of platinum(III) by flash photolysis of PtCl62–. Journal of the Chemical Society, Chemical Communications. https://doi.org/10.1039/C39720000132
Balashev, K. P., Vasilyev, V. V., Zimnyakov, A. M., & Shagisultanova, G. A. (1984). Kinetics of chain photoaquation with the participation of Pt(III) complexes. Koord. Khim. (Russian Journal of Coordination Chemistry), 10, 976–980. (in Russian).
Balashev, K. P., Blinov, I. I., & Shagisultanova, G. A. (1987). Acid-base properties of platinum(III) chloride complexes. Zh. Neorg. Khim. (Russian Journal of Inorganic Chemistry), 32, 2470–2474. (in Russian).
Balashev, K. P., Blinov, I. I., & Shagisultanova, G. A. (1987). Kinetics and mechanism of PtCl62- ion photosubstitution in acetonitrile. Kinet. Katal. (Russian Journal of Kinetics and Catalysis), 28, 801–804. (in Russian).
Monreal, O., Esmaeliand, T., & Hoggard, P. E. (1997). A kinetic study of the photoreduction of hexachloroplatinate(IV) in chloroform. Inorganica Chimica Acta, 265, 279–281. https://doi.org/10.1016/S0020-1693(97)05712-5
Hoggard, P. E., & Vogler, A. (2003). The photooxidation of tetrachloroplatinate(II) in chloroform. Inorganica Chimica Acta, 348, 229–232. https://doi.org/10.1016/S0020-1693(03)00004-5
Matveeva, S. G., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., & Glebov, E. M. (2018). Mechanism of chain photochemical reaction of (n-Bu4N)2[PtCl6] in chloroform. Journal of Photochemistry and Photobiology A: Chemistry, 359, 80–86. https://doi.org/10.1016/j.jphotochem.2018.03.038
Shushakov, A. A., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., Zadesenets, A. V., Melnikov, A. A., Chekalin, S. V., & Glebov, E. M. (2017). Primary photochemical processes for Pt(IV) diazido complexes prospective in photodynamic therapy of tumors. Dalton Transactions, 46, 9440–9450. https://doi.org/10.1039/C7DT01529A
Zhdankin, G. I., Grivin, V. P., Plyusnin, V. F., Tkachenko, P. A., Vasilchenko, D. B., & Glebov, E. M. (2023). Chain photosolvation of trans, trans, trans-[PtIV(py)2(N3)2(OH)2] complex prospective as light-activated antitumor agent. Mendeleev Communications, 33, 61–63. https://doi.org/10.1016/j.mencom.2023.01.019
留言 (0)