Li, H., Li, Z., Peng, L., et al. (2017). Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage. Free Radical Research, 51(2), 200–210. https://doi.org/10.1080/10715762.2017.1294755
Article CAS PubMed Google Scholar
Lu, Z., Xia, Q., Cheng, Y., et al. (2022). Hesperetin attenuates UVA-induced photodamage in human dermal fibroblast cells. Journal of Cosmetic Dermatology, 21(11), 6261–6269. https://doi.org/10.1111/jocd.15230
Okoye, C. N., Koren, S. A., & Wojtovich, A. P. (2023). Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biology, 67, 102926. https://doi.org/10.1016/j.redox.2023.102926
Article CAS PubMed PubMed Central Google Scholar
Zhong, X., Deng, Y., Yang, H., et al. (2024). Role of autophagy in skin photoaging: A narrative review. Medicine (Baltimore), 103(8), e37178. https://doi.org/10.1097/MD.0000000000037178
Article CAS PubMed Google Scholar
Liu, H., Dong, J., Du, R., et al. (2024). Collagen study advances for photoaging skin. Photodermatology, Photoimmunology and Photomedicine, 40(1), e12931. https://doi.org/10.1111/phpp.12931
Article CAS PubMed Google Scholar
Liang, W., Zhao, C., Chen, Z., et al. (2021). Sirtuin-3 protects cochlear hair cells against noise-induced damage via the superoxide dismutase 2/reactive oxygen species signaling pathway. Frontiers in Cell and Development Biology, 9, 766512. https://doi.org/10.3389/fcell.2021.766512
Huang, Y., Zhang, X., Chen, L., et al. (2023). Lycium barbarum ameliorates neural damage induced by experimental ischemic stroke and radiation exposure. Frontiers in Bioscience (Landmark Ed), 28(2), 38. https://doi.org/10.31083/j.fbl2802038
Xiao, Z., Deng, Q., Zhou, W., et al. (2022). Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far? Pharmacology & Therapeutics, 229, 107921. https://doi.org/10.1016/j.pharmthera.2021.107921
Qi, Y., Duan, G., Fan, G., et al. (2022). Effect of Lycium barbarum polysaccharides on cell signal transduction pathways. Biomedicine & Pharmacotherapy, 147, 112620. https://doi.org/10.1016/j.biopha.2022.112620. Epub 2022 Jan 12 PMID: 35032768.
Hao, K., Wang, H., Zhang, Y., et al. (2022). Nicotinamide reverses deficits in puberty-born neurons and cognitive function after maternal separation. Journal of Neuroinflammation, 19(1), 232. https://doi.org/10.1186/s12974-022-02591-y
Article CAS PubMed PubMed Central Google Scholar
Xu, H., Gan, C., Gao, Z., et al. (2020). Caffeine targets SIRT3 to enhance SOD2 activity in mitochondria. Frontiers in Cell Development Biology., 8, 822. https://doi.org/10.3389/fcell.2020.00822
Wang, Z., Sun, Q., Fang, J., et al. (2022). The anti-aging activity of Lycium barbarum polysaccharide extracted by yeast fermentation: In vivo and in vitro studies. International Journal of Biological Macromolecules, 209(Pt B), 2032–2041. https://doi.org/10.1016/j.ijbiomac.2022.04.184
Article CAS PubMed Google Scholar
Liang, B., Peng, L., Li, R., Li, H., Mo, Z., Dai, X., Jiang, N., Liu, Q., Zhang, E., Deng, H., Li, Z., & Zhu, H. (2018). Lycium barbarum polysaccharide protects HSF cells against ultraviolet-induced damage through the activation of Nrf2. Cellular & Molecular Biology Letters, 1(23), 18. https://doi.org/10.1186/s11658-018-0084-2
Reeve, V. E., Allanson, M., Arun, S. J., Domanski, D., & Painter, N. (2010). Mice drinking goji berry juice (Lycium barbarum) are protected from UV radiation-induced skin damage via antioxidant pathways. Photochemical & Photobiological Sciences, 9(4), 601–607. https://doi.org/10.1039/b9pp00177h. PMID: 20354657.
Wu, H., Liu, Y., Hao, Y., Hou, D., & Yang, R. (2023). Lycium barbarum polysaccharide protects cardiomyocytes from hypoxia/reoxygenation injury via activation of SIRT3/CypD signaling. Annals of Translational Medicine, 11(2), 72. https://doi.org/10.21037/atm-22-6081
Article PubMed PubMed Central Google Scholar
Zhang, L., Pitcher, L. E., Yousefzadeh, M. J., Niedernhofer, L. J., Robbins, P. D., & Zhu, Y. (2022). Cellular senescence: A key therapeutic target in aging and diseases. The Journal of Clinical Investigation, 132(15), e158450. https://doi.org/10.1172/JCI158450
Article CAS PubMed PubMed Central Google Scholar
Gu, Y., Han, J., Jiang, C., et al. (2020). Biomarkers, oxidative stress and autophagy in skin aging. Ageing Research Reviews, 59, 101036. https://doi.org/10.1016/j.arr.2020.101036
Article CAS PubMed Google Scholar
Dańczak-Pazdrowska, A., Gornowicz-Porowska, J., Polańska, A., et al. (2023). Cellular senescence in skin-related research: Targeted signaling pathways and naturally occurring therapeutic agents. Aging Cell, 22(6), e13845. https://doi.org/10.1111/acel.13845
Article CAS PubMed PubMed Central Google Scholar
Puizina-Ivić N. Skin aging. Acta Dermatovenerol Alp Pannonica Adriat. 2008;17(2):47-54.
Bocheva, G., Slominski, R. M., & Slominski, A. T. (2019). Neuroendocrine aspects of skin aging. International Journal of Molecular Sciences., 20(11), 2798. https://doi.org/10.3390/ijms20112798
Article CAS PubMed PubMed Central Google Scholar
Zhu, S., Li, X., Dang, B., et al. (2022). Lycium Barbarum polysaccharide protects HaCaT cells from PM2.5-induced apoptosis via inhibiting oxidative stress ER stress and autophagy. Redox Report, 27(1), 32–44. https://doi.org/10.1080/13510002.2022.2036507
Article CAS PubMed PubMed Central Google Scholar
Kleszczyński, K., Bilska, B., Stegemann, A., et al. (2018). Melatonin and its metabolites ameliorate uvr-induced mitochondrial oxidative stress in human MNT-1 melanoma cells. International Journal of Molecular Sciences., 19(12), 3786. https://doi.org/10.3390/ijms19123786
Article CAS PubMed PubMed Central Google Scholar
Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology, 11(3), 298–300. https://doi.org/10.1093/geronj/11.3.298
Article CAS PubMed Google Scholar
Cheng, Y., Xia, Q., Lu, Z., et al. (2023). Maslinic acid attenuates UVB-induced oxidative damage in HFF-1 cells. Journal of Cosmetic Dermatology, 22(8), 2352–2360. https://doi.org/10.1111/jocd.15730
Jang, H. Y., Kim, G. B., Kim, J. M., et al. (2023). Fisetin inhibits UVA-induced expression of MMP-1 and MMP-3 through the NOX/ROS/MAPK pathway in human dermal fibroblasts and human epidermal keratinocytes. International Journal of Molecular Sciences., 24(24), 17358. https://doi.org/10.3390/ijms242417358
Article CAS PubMed PubMed Central Google Scholar
Kolodkin, A. N., Sharma, R. P., Colangelo, A. M., et al. (2020). ROS networks: designs, aging, Parkinson’s disease and precision therapies. NPJ Systems Biology and Applications, 6(1), 34. https://doi.org/10.1038/s41540-020-00150-w
Gupta, D., & Abdullah, T. S. (2022). Regulation of mitochondrial dynamics in skin: Role in pathophysiology [J]. International Journal of Dermatology, 61(5), 541–547.
Palmeira, C. M., Teodoro, J. S., Amorim, J. A., et al. (2019). Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins. Free Radical Biology & Medicine, 141, 483–491. https://doi.org/10.1016/j.freeradbiomed.2019.07.017
留言 (0)