Protective effect and mechanism of lycium barbarum polysaccharide against UVB-induced skin photoaging

Li, H., Li, Z., Peng, L., et al. (2017). Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage. Free Radical Research, 51(2), 200–210. https://doi.org/10.1080/10715762.2017.1294755

Article  CAS  PubMed  Google Scholar 

Lu, Z., Xia, Q., Cheng, Y., et al. (2022). Hesperetin attenuates UVA-induced photodamage in human dermal fibroblast cells. Journal of Cosmetic Dermatology, 21(11), 6261–6269. https://doi.org/10.1111/jocd.15230

Article  PubMed  Google Scholar 

Okoye, C. N., Koren, S. A., & Wojtovich, A. P. (2023). Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biology, 67, 102926. https://doi.org/10.1016/j.redox.2023.102926

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong, X., Deng, Y., Yang, H., et al. (2024). Role of autophagy in skin photoaging: A narrative review. Medicine (Baltimore), 103(8), e37178. https://doi.org/10.1097/MD.0000000000037178

Article  CAS  PubMed  Google Scholar 

Liu, H., Dong, J., Du, R., et al. (2024). Collagen study advances for photoaging skin. Photodermatology, Photoimmunology and Photomedicine, 40(1), e12931. https://doi.org/10.1111/phpp.12931

Article  CAS  PubMed  Google Scholar 

Liang, W., Zhao, C., Chen, Z., et al. (2021). Sirtuin-3 protects cochlear hair cells against noise-induced damage via the superoxide dismutase 2/reactive oxygen species signaling pathway. Frontiers in Cell and Development Biology, 9, 766512. https://doi.org/10.3389/fcell.2021.766512

Article  Google Scholar 

Huang, Y., Zhang, X., Chen, L., et al. (2023). Lycium barbarum ameliorates neural damage induced by experimental ischemic stroke and radiation exposure. Frontiers in Bioscience (Landmark Ed), 28(2), 38. https://doi.org/10.31083/j.fbl2802038

Article  CAS  Google Scholar 

Xiao, Z., Deng, Q., Zhou, W., et al. (2022). Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far? Pharmacology & Therapeutics, 229, 107921. https://doi.org/10.1016/j.pharmthera.2021.107921

Article  CAS  Google Scholar 

Qi, Y., Duan, G., Fan, G., et al. (2022). Effect of Lycium barbarum polysaccharides on cell signal transduction pathways. Biomedicine & Pharmacotherapy, 147, 112620. https://doi.org/10.1016/j.biopha.2022.112620. Epub 2022 Jan 12 PMID: 35032768.

Article  CAS  Google Scholar 

Hao, K., Wang, H., Zhang, Y., et al. (2022). Nicotinamide reverses deficits in puberty-born neurons and cognitive function after maternal separation. Journal of Neuroinflammation, 19(1), 232. https://doi.org/10.1186/s12974-022-02591-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, H., Gan, C., Gao, Z., et al. (2020). Caffeine targets SIRT3 to enhance SOD2 activity in mitochondria. Frontiers in Cell Development Biology., 8, 822. https://doi.org/10.3389/fcell.2020.00822

Article  Google Scholar 

Wang, Z., Sun, Q., Fang, J., et al. (2022). The anti-aging activity of Lycium barbarum polysaccharide extracted by yeast fermentation: In vivo and in vitro studies. International Journal of Biological Macromolecules, 209(Pt B), 2032–2041. https://doi.org/10.1016/j.ijbiomac.2022.04.184

Article  CAS  PubMed  Google Scholar 

Liang, B., Peng, L., Li, R., Li, H., Mo, Z., Dai, X., Jiang, N., Liu, Q., Zhang, E., Deng, H., Li, Z., & Zhu, H. (2018). Lycium barbarum polysaccharide protects HSF cells against ultraviolet-induced damage through the activation of Nrf2. Cellular & Molecular Biology Letters, 1(23), 18. https://doi.org/10.1186/s11658-018-0084-2

Article  CAS  Google Scholar 

Reeve, V. E., Allanson, M., Arun, S. J., Domanski, D., & Painter, N. (2010). Mice drinking goji berry juice (Lycium barbarum) are protected from UV radiation-induced skin damage via antioxidant pathways. Photochemical & Photobiological Sciences, 9(4), 601–607. https://doi.org/10.1039/b9pp00177h. PMID: 20354657.

Article  CAS  Google Scholar 

Wu, H., Liu, Y., Hao, Y., Hou, D., & Yang, R. (2023). Lycium barbarum polysaccharide protects cardiomyocytes from hypoxia/reoxygenation injury via activation of SIRT3/CypD signaling. Annals of Translational Medicine, 11(2), 72. https://doi.org/10.21037/atm-22-6081

Article  PubMed  PubMed Central  Google Scholar 

Zhang, L., Pitcher, L. E., Yousefzadeh, M. J., Niedernhofer, L. J., Robbins, P. D., & Zhu, Y. (2022). Cellular senescence: A key therapeutic target in aging and diseases. The Journal of Clinical Investigation, 132(15), e158450. https://doi.org/10.1172/JCI158450

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu, Y., Han, J., Jiang, C., et al. (2020). Biomarkers, oxidative stress and autophagy in skin aging. Ageing Research Reviews, 59, 101036. https://doi.org/10.1016/j.arr.2020.101036

Article  CAS  PubMed  Google Scholar 

Dańczak-Pazdrowska, A., Gornowicz-Porowska, J., Polańska, A., et al. (2023). Cellular senescence in skin-related research: Targeted signaling pathways and naturally occurring therapeutic agents. Aging Cell, 22(6), e13845. https://doi.org/10.1111/acel.13845

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puizina-Ivić N. Skin aging. Acta Dermatovenerol Alp Pannonica Adriat. 2008;17(2):47-54.

Bocheva, G., Slominski, R. M., & Slominski, A. T. (2019). Neuroendocrine aspects of skin aging. International Journal of Molecular Sciences., 20(11), 2798. https://doi.org/10.3390/ijms20112798

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, S., Li, X., Dang, B., et al. (2022). Lycium Barbarum polysaccharide protects HaCaT cells from PM2.5-induced apoptosis via inhibiting oxidative stress ER stress and autophagy. Redox Report, 27(1), 32–44. https://doi.org/10.1080/13510002.2022.2036507

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kleszczyński, K., Bilska, B., Stegemann, A., et al. (2018). Melatonin and its metabolites ameliorate uvr-induced mitochondrial oxidative stress in human MNT-1 melanoma cells. International Journal of Molecular Sciences., 19(12), 3786. https://doi.org/10.3390/ijms19123786

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology, 11(3), 298–300. https://doi.org/10.1093/geronj/11.3.298

Article  CAS  PubMed  Google Scholar 

Cheng, Y., Xia, Q., Lu, Z., et al. (2023). Maslinic acid attenuates UVB-induced oxidative damage in HFF-1 cells. Journal of Cosmetic Dermatology, 22(8), 2352–2360. https://doi.org/10.1111/jocd.15730

Article  PubMed  Google Scholar 

Jang, H. Y., Kim, G. B., Kim, J. M., et al. (2023). Fisetin inhibits UVA-induced expression of MMP-1 and MMP-3 through the NOX/ROS/MAPK pathway in human dermal fibroblasts and human epidermal keratinocytes. International Journal of Molecular Sciences., 24(24), 17358. https://doi.org/10.3390/ijms242417358

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolodkin, A. N., Sharma, R. P., Colangelo, A. M., et al. (2020). ROS networks: designs, aging, Parkinson’s disease and precision therapies. NPJ Systems Biology and Applications, 6(1), 34. https://doi.org/10.1038/s41540-020-00150-w

Article  CAS  Google Scholar 

Gupta, D., & Abdullah, T. S. (2022). Regulation of mitochondrial dynamics in skin: Role in pathophysiology [J]. International Journal of Dermatology, 61(5), 541–547.

Article  PubMed  Google Scholar 

Palmeira, C. M., Teodoro, J. S., Amorim, J. A., et al. (2019). Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins. Free Radical Biology & Medicine, 141, 483–491. https://doi.org/10.1016/j.freeradbiomed.2019.07.017

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif