Adhish M, Manjubala I (2023) Effectiveness of zebrafish models in understanding human diseases—a review of models. Heliyon 9(3):e14557. https://doi.org/10.1016/j.heliyon.2023.e14557
Article PubMed PubMed Central Google Scholar
Alt FW, Kellems RE, Bertino JR, Schimke RT (1978) Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem 253(5):1357–1370
Article CAS PubMed Google Scholar
Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282(5394):1711–1714. https://doi.org/10.1126/science.282.5394.1711
Article CAS PubMed Google Scholar
Anatskaya OV, Vinogradov AE (2022) Polyploidy as a fundamental phenomenon in evolution, development, adaptation and diseases. Int J Mol Sci 23(7):3542. https://doi.org/10.3390/ijms23073542
Article PubMed PubMed Central Google Scholar
Anderson EB, Mao Q, Ho RK (2022) Tbx5a and Tbx5b paralogues act in combination to control separate vectors of migration in the fin field of zebrafish. Dev Biol 481:201–214. https://doi.org/10.1016/j.ydbio.2021.10.008
Arnegard ME, Zwickl DJ, Lu Y, Zakon HH (2010) Old gene duplication facilitates origin and diversification of an innovative communication system—Twice. Proc Natl Acad Sci 107(51):22172–22177. https://doi.org/10.1073/pnas.1011803107
Article PubMed PubMed Central Google Scholar
Askari BS, Krajinovic M (2010) Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Curr Genomics 11(8):578–583. https://doi.org/10.2174/138920210793360925
Article PubMed PubMed Central Google Scholar
Ata H, Ekstrom TL, Martínez-Gálvez G, Mann CM, Dvornikov AV, Schaefbauer KJ, Ma AC, Dobbs D, Clark KJ, Ekker SC (2018) Robust activation of microhomology-mediated end joining for precision gene editing applications. PLoS Genet 14(9):e1007652. https://doi.org/10.1371/journal.pgen.1007652
Article CAS PubMed PubMed Central Google Scholar
Auer TO, Duroure K, Cian AD, Concordet J-P, Bene FD (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24(1):142–153. https://doi.org/10.1101/gr.161638.113
Article CAS PubMed PubMed Central Google Scholar
Baanannou A, Rastegar S, Bouzid A, Takamiya M, Gerber V, Souissi A, Beil T, Jrad O, Strähle U, Masmoudi S (2020) Gene duplication and functional divergence of the zebrafish otospiralin genes. Dev Genes Evol 230(1):27–36. https://doi.org/10.1007/S00427-019-00642-8/TABLES/3
Baines C, Meitern R, Kreitsberg R, Sepp T (2022) Comparative study of the evolution of cancer gene duplications across fish. Evol Appl 15(11):1834–1845. https://doi.org/10.1111/eva.13481
Article PubMed PubMed Central Google Scholar
Barut BA, Zon LI (2000) Realizing the potential of zebrafish as a model for human disease. Physiol Genomics 2(2):49–51. https://doi.org/10.1152/physiolgenomics.2000.2.2.49
Article CAS PubMed Google Scholar
Belliveau DJ, Venkatachalam AB, Thisse C, Thisse B, Ma H, Wright JM (2010) The duplicated retinol-binding protein 7 (rbp7) genes are differentially transcribed in embryos and adult zebrafish (Danio rerio). Gene Expr Patterns: GEP 10(4–5):167–176. https://doi.org/10.1016/j.gep.2010.04.003
Article CAS PubMed Google Scholar
Bingulac-Popovic J, Figueroa F, Sato A, Talbot WS, Johnson SL, Gates M, Postlethwait JH, Klein J (1997) Mapping of Mhc class I and class II regions to different linkage groups in the zebrafish, Danio Rerio. Immunogenetics 46(2):129–134. https://doi.org/10.1007/s002510050251
Article CAS PubMed Google Scholar
Birchler JA, Yang H (2022) The multiple fates of gene duplications: deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. Plant Cell 34(7):2466–2474. https://doi.org/10.1093/plcell/koac076
Article PubMed PubMed Central Google Scholar
Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution[W]. Plant Cell 16(7):1679–1691. https://doi.org/10.1105/tpc.021410
Article CAS PubMed PubMed Central Google Scholar
Cai W, Pei J, Grishin NV (2004) Reconstruction of ancestral protein sequences and its applications. BMC Evol Biol 4(1):33. https://doi.org/10.1186/1471-2148-4-33
Article CAS PubMed PubMed Central Google Scholar
Cappuzzo F, Varella-Garcia M, Shigematsu H, Domenichini I, Bartolini S, Ceresoli GL, Rossi E, Ludovini V, Gregorc V, Toschi L, Franklin WA, Crino L, Gazdar AF, Bunn PA, Hirsch FR (2005) Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol: Off J Am Soc Clin Oncol 23(22):5007–5018. https://doi.org/10.1200/JCO.2005.09.111
Chang L, Khoo B, Wong L, Tropepe V (2006) Genomic sequence and spatiotemporal expression comparison of zebrafish mbx1 and its paralog, mbx2. Dev Genes Evol 216(10):647–654. https://doi.org/10.1007/s00427-006-0082-7
Article CAS PubMed Google Scholar
Chen C, Fang F, Wang X et al (2022). Phenotypic and genotypic characteristics of SCN1A associated seizure diseases. Front Mol Neurosci 15. https://doi.org/10.3389/fnmol.2022.821012
Chen X, Lin Y, Jiang Z, Li Y, Zhang Y, Wang Y, Yu F, Guo W, Chen L, Chen M, Zhang W, Wang C, Fu F (2022b) HER2 copy number quantification in primary tumor and cell-free DNA provides additional prognostic information in HER2 positive early breast cancer. The Breast : Off J Eur Soc Mastology 62:114–122. https://doi.org/10.1016/j.breast.2022.02.002
Chen X, Wan L, Wang W et al (2020) Re-recognition of pseudogenes: from molecular to clinical applications 10(4):1479–1499. https://doi.org/10.7150/thno.40659
Chia K, Klingseisen A, Sieger D et al (2022). Zebrafish as a model organism for neurodegenerative disease. Front Mol Neurosci 15. https://www.frontiersin.org/articles/10.3389/fnmol.2022.940484
Choi T-Y, Choi T-I, Lee Y-R, Choe S-K, Kim C-H (2021) Zebrafish as an animal model for biomedical research. Exp Mol Med 53(3):310–317. https://doi.org/10.1038/s12276-021-00571-5
Article CAS PubMed PubMed Central Google Scholar
Christiaens JF, Van Mulders SE, Duitama J, Brown CA, Ghequire MG, De Meester L, Michiels J, Wenseleers T, Voordeckers K, Verstrepen KJ (2012) Functional divergence of gene duplicates through ectopic recombination. EMBO Rep 13(12):1145–1151. https://doi.org/10.1038/embor.2012.157
Article CAS PubMed PubMed Central Google Scholar
Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9(12):938–950. https://doi.org/10.1038/nrg2482
Article CAS PubMed Google Scholar
Copley SD (2020) Evolution of new enzymes by gene duplication and divergence. FEBS J 287(7):1262–1283. https://doi.org/10.1111/febs.15299
Article CAS PubMed PubMed Central Google Scholar
Crow KD, Amemiya CT, Roth J, Wagner GP (2009) Hypermutability of HoxA13A and functional divergence from its paralog are associated with the origin of a novel developmental feature in zebrafish and related taxa (Cypriniformes). Evol Int J Org Evol 63(6):1574–1592. https://doi.org/10.1111/j.1558-5646.2009.00657.x
Crow KD, Stadler PF, Lynch VJ, Amemiya C, Wagner GP (2006) The “Fish-Specific” hox cluster duplication is coincident with the origin of teleosts. Mol Biol Evol 23(1):121–136. https://doi.org/10.1093/molbev/msj020
留言 (0)