Zebrafish: unraveling genetic complexity through duplicated genes

Adhish M, Manjubala I (2023) Effectiveness of zebrafish models in understanding human diseases—a review of models. Heliyon 9(3):e14557. https://doi.org/10.1016/j.heliyon.2023.e14557

Article  PubMed  PubMed Central  Google Scholar 

Alt FW, Kellems RE, Bertino JR, Schimke RT (1978) Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem 253(5):1357–1370

Article  CAS  PubMed  Google Scholar 

Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282(5394):1711–1714. https://doi.org/10.1126/science.282.5394.1711

Article  CAS  PubMed  Google Scholar 

Anatskaya OV, Vinogradov AE (2022) Polyploidy as a fundamental phenomenon in evolution, development, adaptation and diseases. Int J Mol Sci 23(7):3542. https://doi.org/10.3390/ijms23073542

Article  PubMed  PubMed Central  Google Scholar 

Anderson EB, Mao Q, Ho RK (2022) Tbx5a and Tbx5b paralogues act in combination to control separate vectors of migration in the fin field of zebrafish. Dev Biol 481:201–214. https://doi.org/10.1016/j.ydbio.2021.10.008

Article  CAS  Google Scholar 

Arnegard ME, Zwickl DJ, Lu Y, Zakon HH (2010) Old gene duplication facilitates origin and diversification of an innovative communication system—Twice. Proc Natl Acad Sci 107(51):22172–22177. https://doi.org/10.1073/pnas.1011803107

Article  PubMed  PubMed Central  Google Scholar 

Askari BS, Krajinovic M (2010) Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Curr Genomics 11(8):578–583. https://doi.org/10.2174/138920210793360925

Article  PubMed  PubMed Central  Google Scholar 

Ata H, Ekstrom TL, Martínez-Gálvez G, Mann CM, Dvornikov AV, Schaefbauer KJ, Ma AC, Dobbs D, Clark KJ, Ekker SC (2018) Robust activation of microhomology-mediated end joining for precision gene editing applications. PLoS Genet 14(9):e1007652. https://doi.org/10.1371/journal.pgen.1007652

Article  CAS  PubMed  PubMed Central  Google Scholar 

Auer TO, Duroure K, Cian AD, Concordet J-P, Bene FD (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24(1):142–153. https://doi.org/10.1101/gr.161638.113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baanannou A, Rastegar S, Bouzid A, Takamiya M, Gerber V, Souissi A, Beil T, Jrad O, Strähle U, Masmoudi S (2020) Gene duplication and functional divergence of the zebrafish otospiralin genes. Dev Genes Evol 230(1):27–36. https://doi.org/10.1007/S00427-019-00642-8/TABLES/3

Article  PubMed  Google Scholar 

Baines C, Meitern R, Kreitsberg R, Sepp T (2022) Comparative study of the evolution of cancer gene duplications across fish. Evol Appl 15(11):1834–1845. https://doi.org/10.1111/eva.13481

Article  PubMed  PubMed Central  Google Scholar 

Barut BA, Zon LI (2000) Realizing the potential of zebrafish as a model for human disease. Physiol Genomics 2(2):49–51. https://doi.org/10.1152/physiolgenomics.2000.2.2.49

Article  CAS  PubMed  Google Scholar 

Belliveau DJ, Venkatachalam AB, Thisse C, Thisse B, Ma H, Wright JM (2010) The duplicated retinol-binding protein 7 (rbp7) genes are differentially transcribed in embryos and adult zebrafish (Danio rerio). Gene Expr Patterns: GEP 10(4–5):167–176. https://doi.org/10.1016/j.gep.2010.04.003

Article  CAS  PubMed  Google Scholar 

Bingulac-Popovic J, Figueroa F, Sato A, Talbot WS, Johnson SL, Gates M, Postlethwait JH, Klein J (1997) Mapping of Mhc class I and class II regions to different linkage groups in the zebrafish, Danio Rerio. Immunogenetics 46(2):129–134. https://doi.org/10.1007/s002510050251

Article  CAS  PubMed  Google Scholar 

Birchler JA, Yang H (2022) The multiple fates of gene duplications: deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. Plant Cell 34(7):2466–2474. https://doi.org/10.1093/plcell/koac076

Article  PubMed  PubMed Central  Google Scholar 

Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution[W]. Plant Cell 16(7):1679–1691. https://doi.org/10.1105/tpc.021410

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai W, Pei J, Grishin NV (2004) Reconstruction of ancestral protein sequences and its applications. BMC Evol Biol 4(1):33. https://doi.org/10.1186/1471-2148-4-33

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cappuzzo F, Varella-Garcia M, Shigematsu H, Domenichini I, Bartolini S, Ceresoli GL, Rossi E, Ludovini V, Gregorc V, Toschi L, Franklin WA, Crino L, Gazdar AF, Bunn PA, Hirsch FR (2005) Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol: Off J Am Soc Clin Oncol 23(22):5007–5018. https://doi.org/10.1200/JCO.2005.09.111

Article  CAS  Google Scholar 

Chang L, Khoo B, Wong L, Tropepe V (2006) Genomic sequence and spatiotemporal expression comparison of zebrafish mbx1 and its paralog, mbx2. Dev Genes Evol 216(10):647–654. https://doi.org/10.1007/s00427-006-0082-7

Article  CAS  PubMed  Google Scholar 

Chen C, Fang F, Wang X et al (2022). Phenotypic and genotypic characteristics of SCN1A associated seizure diseases. Front Mol Neurosci 15. https://doi.org/10.3389/fnmol.2022.821012

Chen X, Lin Y, Jiang Z, Li Y, Zhang Y, Wang Y, Yu F, Guo W, Chen L, Chen M, Zhang W, Wang C, Fu F (2022b) HER2 copy number quantification in primary tumor and cell-free DNA provides additional prognostic information in HER2 positive early breast cancer. The Breast : Off J Eur Soc Mastology 62:114–122. https://doi.org/10.1016/j.breast.2022.02.002

Article  Google Scholar 

Chen X, Wan L, Wang W et al (2020) Re-recognition of pseudogenes: from molecular to clinical applications 10(4):1479–1499. https://doi.org/10.7150/thno.40659

Chia K, Klingseisen A, Sieger D et al (2022). Zebrafish as a model organism for neurodegenerative disease. Front Mol Neurosci 15. https://www.frontiersin.org/articles/10.3389/fnmol.2022.940484

Choi T-Y, Choi T-I, Lee Y-R, Choe S-K, Kim C-H (2021) Zebrafish as an animal model for biomedical research. Exp Mol Med 53(3):310–317. https://doi.org/10.1038/s12276-021-00571-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christiaens JF, Van Mulders SE, Duitama J, Brown CA, Ghequire MG, De Meester L, Michiels J, Wenseleers T, Voordeckers K, Verstrepen KJ (2012) Functional divergence of gene duplicates through ectopic recombination. EMBO Rep 13(12):1145–1151. https://doi.org/10.1038/embor.2012.157

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9(12):938–950. https://doi.org/10.1038/nrg2482

Article  CAS  PubMed  Google Scholar 

Copley SD (2020) Evolution of new enzymes by gene duplication and divergence. FEBS J 287(7):1262–1283. https://doi.org/10.1111/febs.15299

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crow KD, Amemiya CT, Roth J, Wagner GP (2009) Hypermutability of HoxA13A and functional divergence from its paralog are associated with the origin of a novel developmental feature in zebrafish and related taxa (Cypriniformes). Evol Int J Org Evol 63(6):1574–1592. https://doi.org/10.1111/j.1558-5646.2009.00657.x

Article  CAS  Google Scholar 

Crow KD, Stadler PF, Lynch VJ, Amemiya C, Wagner GP (2006) The “Fish-Specific” hox cluster duplication is coincident with the origin of teleosts. Mol Biol Evol 23(1):121–136. https://doi.org/10.1093/molbev/msj020

Article  CAS  PubMed 

留言 (0)

沒有登入
gif