Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group (2017) KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 7:1–59
Mitsnefes MM, Betoko A, Schneider MF et al (2018) FGF23 and Left Ventricular Hypertrophy in Children with CKD. Clin J Am Soc Nephrol 13:45–52. https://doi.org/10.2215/CJN.02110217
Article CAS PubMed Google Scholar
Perry WK (2013) Bone disease in Pediatric Chronic Kidney Disease. Pediatr Nephrol 28:569–576. https://doi.org/10.1007/s00467-012-2324-4
Kocełak P, Olszanecka-Glinianowicz M, Chudek J (2012) Fibroblast growth factor 23 structure, function and role in kidney diseases. Adv Clin Exp Med 21:391–401
Hruska KA, Sugatani T, Agapova O, Fang Y (2017) The chronic kidney disease - Mineral bone disorder (CKD-MBD): Advances in pathophysiology. Bone 100:80–86. https://doi.org/10.1016/j.bone.2017.01.023
Article CAS PubMed PubMed Central Google Scholar
Sugatani T (2018) Systemic activation of activin a signaling causes chronic kidney disease-mineral bone disorder. Int J Mol Sci 19:2490. https://doi.org/10.3390/ijms19092490
Article CAS PubMed PubMed Central Google Scholar
Cianciolo G, La Manna G, Capelli I et al (2021) The role of activin: the other side of chronic kidney disease-mineral bone disorder? Nephrol Dial Transplant 36:966–974. https://doi.org/10.1093/ndt/gfaa203
Article CAS PubMed Google Scholar
Shetty S, Kapoor N, Bondu JD, Thomas N, Paul TV (2016) Bone turnover markers: Emerging tool in the management of osteoporosis. Indian J Endocrinol Metab 20:846–852. https://doi.org/10.4103/2230-8210.192914
Article PubMed PubMed Central Google Scholar
Agapova OA, Fang Y, Sugatani T, Seifert ME, Hruska KA (2016) Ligand trap for the activin type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease. Kidney Int 89:1231–1243. https://doi.org/10.1016/j.kint.2016.02.002
Article CAS PubMed PubMed Central Google Scholar
Lima F, Mawad H, El-Husseini AA, Davenport DL, Malluche HH (2016) Serum bone markers in ROD patients across the spectrum of decreases in GFR: Activin A increases before all other markers. Clin Nephrol 91:222–230. https://doi.org/10.5414/CN109650
Nordholm A, Sørensen IMH, Bjergfelt SS et al (2023) Plasma activin A rises with declining kidney function and is independently associated with mortality in patients with chronic kidney disease. Clin Kidney J 6:2712–2720. https://doi.org/10.1093/ckj/sfad238
Iriuchishima H, Maeshima A, Takahashi S et al (2019) Activin A: a novel urinary biomarker of renal impairment in multiple myeloma. Biosci Rep 39:7. https://doi.org/10.1042/BSR20190206
Harada K, Shintani Y, Sakamoto Y, Wakatsuki M, Shitsukawa K, Saito S (1996) Serum immunoreactiveactivin A levels in normal subjects and patients with various diseases. J Clin Endocrinol Metab 81:2125–2130. https://doi.org/10.1210/jcem.81.6.8964839
Article CAS PubMed Google Scholar
Anastasilakis AD, Polyzos SA, Makras P et al (2013) Circulating activin-A is elevated in postmenopausal women with low bone mass: the three-month effect of zoledronic acid treatment. Osteoporos Int 24:2127–2132. https://doi.org/10.1007/s00198-012-2198-0
Article CAS PubMed Google Scholar
Inoue S, Orimo A, Hosoi T et al (1994) Demonstration of activin-A in arteriosclerotic lesions. Biochem Biophys Res Commun 205:441–448. https://doi.org/10.1006/bbrc.1994.2685
Article CAS PubMed Google Scholar
Yamashita S, Maeshima A, Kojima I et al (2004) Activin A is a potent activator of renal interstitial fibroblasts. J Am Soc Nephrol 15:91–101. https://doi.org/10.1097/01.asn.0000103225.68136.e6
Article CAS PubMed Google Scholar
van Husen M, Fischer A-K, Lehnhardt A et al (2010) Fibroblast growth factor 23 and bone metabolism in children with chronic kidney disease. Kidney Int 78:200–206. https://doi.org/10.1038/ki.2010.107
Article CAS PubMed Google Scholar
Siomou E, Challa A, Printza N et al (2011) Serum osteoprotegerin, RANKL and fibroblast growth factor-23 in children with chronic kidney disease. Pediatr Nephrol 26:1105–1114. https://doi.org/10.1007/s00467-011-1870-5
Troen BR (2004) The role of cathepsin K in normal bone resorption. Drug News Perspect 17:19–28. https://doi.org/10.1358/dnp.2004.17.1.829022
Article CAS PubMed Google Scholar
Holzer G, Noske H, Lang T, Holzer L, Willinger U (2005) Soluble cathepsin K: a novel marker for the prediction of nontraumatic fractures? J Lab Clin Med 146:13–17. https://doi.org/10.1016/j.lab.2005.03.016
Article CAS PubMed Google Scholar
Adolf D, Wex T, Jahn O et al (2012) Serum cathepsin K levels are not suitable to differentiate women with chronic bone disorders such as osteopenia and osteoporosis from healthy pre- and postmenopausal women. Maturitas 71:169–172. https://doi.org/10.1016/j.maturitas.2011.11.024
Article CAS PubMed Google Scholar
Piatek S, Adolf D, Wex T et al (2013) Multiparameter analysis of serum levels of C-telopeptide crosslaps, bone-specific alkaline phosphatase, cathepsin K, osteoprotegerin and receptor activator of nuclear factor κB ligand in the diagnosis of osteoporosis. Maturitas 74:363–368. https://doi.org/10.1016/j.maturitas.2013.01.005
Article CAS PubMed Google Scholar
Kerschan-Schindl K, Hawa G, Kudlacek S, Woloszczuk W, Pietschmann P (2005) Serum levels of cathepsin K decrease with age in both women and men. Exp Gerontol 40:532–535. https://doi.org/10.1016/j.exger.2005.04.001
留言 (0)