Activin A: a marker of mineral bone disorder in children with chronic kidney disease?

Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group (2017) KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 7:1–59

Article  Google Scholar 

Mitsnefes MM, Betoko A, Schneider MF et al (2018) FGF23 and Left Ventricular Hypertrophy in Children with CKD. Clin J Am Soc Nephrol 13:45–52. https://doi.org/10.2215/CJN.02110217

Article  CAS  PubMed  Google Scholar 

Perry WK (2013) Bone disease in Pediatric Chronic Kidney Disease. Pediatr Nephrol 28:569–576. https://doi.org/10.1007/s00467-012-2324-4

Article  Google Scholar 

Kocełak P, Olszanecka-Glinianowicz M, Chudek J (2012) Fibroblast growth factor 23 structure, function and role in kidney diseases. Adv Clin Exp Med 21:391–401

PubMed  Google Scholar 

Hruska KA, Sugatani T, Agapova O, Fang Y (2017) The chronic kidney disease - Mineral bone disorder (CKD-MBD): Advances in pathophysiology. Bone 100:80–86. https://doi.org/10.1016/j.bone.2017.01.023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sugatani T (2018) Systemic activation of activin a signaling causes chronic kidney disease-mineral bone disorder. Int J Mol Sci 19:2490. https://doi.org/10.3390/ijms19092490

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cianciolo G, La Manna G, Capelli I et al (2021) The role of activin: the other side of chronic kidney disease-mineral bone disorder? Nephrol Dial Transplant 36:966–974. https://doi.org/10.1093/ndt/gfaa203

Article  CAS  PubMed  Google Scholar 

Shetty S, Kapoor N, Bondu JD, Thomas N, Paul TV (2016) Bone turnover markers: Emerging tool in the management of osteoporosis. Indian J Endocrinol Metab 20:846–852. https://doi.org/10.4103/2230-8210.192914

Article  PubMed  PubMed Central  Google Scholar 

Agapova OA, Fang Y, Sugatani T, Seifert ME, Hruska KA (2016) Ligand trap for the activin type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease. Kidney Int 89:1231–1243. https://doi.org/10.1016/j.kint.2016.02.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lima F, Mawad H, El-Husseini AA, Davenport DL, Malluche HH (2016) Serum bone markers in ROD patients across the spectrum of decreases in GFR: Activin A increases before all other markers. Clin Nephrol 91:222–230. https://doi.org/10.5414/CN109650

Article  Google Scholar 

Nordholm A, Sørensen IMH, Bjergfelt SS et al (2023) Plasma activin A rises with declining kidney function and is independently associated with mortality in patients with chronic kidney disease. Clin Kidney J 6:2712–2720. https://doi.org/10.1093/ckj/sfad238

Article  Google Scholar 

Iriuchishima H, Maeshima A, Takahashi S et al (2019) Activin A: a novel urinary biomarker of renal impairment in multiple myeloma. Biosci Rep 39:7. https://doi.org/10.1042/BSR20190206

Article  Google Scholar 

Harada K, Shintani Y, Sakamoto Y, Wakatsuki M, Shitsukawa K, Saito S (1996) Serum immunoreactiveactivin A levels in normal subjects and patients with various diseases. J Clin Endocrinol Metab 81:2125–2130. https://doi.org/10.1210/jcem.81.6.8964839

Article  CAS  PubMed  Google Scholar 

Anastasilakis AD, Polyzos SA, Makras P et al (2013) Circulating activin-A is elevated in postmenopausal women with low bone mass: the three-month effect of zoledronic acid treatment. Osteoporos Int 24:2127–2132. https://doi.org/10.1007/s00198-012-2198-0

Article  CAS  PubMed  Google Scholar 

Inoue S, Orimo A, Hosoi T et al (1994) Demonstration of activin-A in arteriosclerotic lesions. Biochem Biophys Res Commun 205:441–448. https://doi.org/10.1006/bbrc.1994.2685

Article  CAS  PubMed  Google Scholar 

Yamashita S, Maeshima A, Kojima I et al (2004) Activin A is a potent activator of renal interstitial fibroblasts. J Am Soc Nephrol 15:91–101. https://doi.org/10.1097/01.asn.0000103225.68136.e6

Article  CAS  PubMed  Google Scholar 

van Husen M, Fischer A-K, Lehnhardt A et al (2010) Fibroblast growth factor 23 and bone metabolism in children with chronic kidney disease. Kidney Int 78:200–206. https://doi.org/10.1038/ki.2010.107

Article  CAS  PubMed  Google Scholar 

Siomou E, Challa A, Printza N et al (2011) Serum osteoprotegerin, RANKL and fibroblast growth factor-23 in children with chronic kidney disease. Pediatr Nephrol 26:1105–1114. https://doi.org/10.1007/s00467-011-1870-5

Article  PubMed  Google Scholar 

Troen BR (2004) The role of cathepsin K in normal bone resorption. Drug News Perspect 17:19–28. https://doi.org/10.1358/dnp.2004.17.1.829022

Article  CAS  PubMed  Google Scholar 

Holzer G, Noske H, Lang T, Holzer L, Willinger U (2005) Soluble cathepsin K: a novel marker for the prediction of nontraumatic fractures? J Lab Clin Med 146:13–17. https://doi.org/10.1016/j.lab.2005.03.016

Article  CAS  PubMed  Google Scholar 

Adolf D, Wex T, Jahn O et al (2012) Serum cathepsin K levels are not suitable to differentiate women with chronic bone disorders such as osteopenia and osteoporosis from healthy pre- and postmenopausal women. Maturitas 71:169–172. https://doi.org/10.1016/j.maturitas.2011.11.024

Article  CAS  PubMed  Google Scholar 

Piatek S, Adolf D, Wex T et al (2013) Multiparameter analysis of serum levels of C-telopeptide crosslaps, bone-specific alkaline phosphatase, cathepsin K, osteoprotegerin and receptor activator of nuclear factor κB ligand in the diagnosis of osteoporosis. Maturitas 74:363–368. https://doi.org/10.1016/j.maturitas.2013.01.005

Article  CAS  PubMed  Google Scholar 

Kerschan-Schindl K, Hawa G, Kudlacek S, Woloszczuk W, Pietschmann P (2005) Serum levels of cathepsin K decrease with age in both women and men. Exp Gerontol 40:532–535. https://doi.org/10.1016/j.exger.2005.04.001

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif