Force Analysis Using Self-Expandable Valve Fluoroscopic Imaging: a way Through Artificial Intelligence

Sammour Y, Krishnaswamy A, Kumar A, Puri R, Tarakji KG, Bazarbashi N, Harb S, Griffin B, Svensson L, Wazni O, Kapadia SR. Incidence, predictors, and implications of permanent pacemaker requirement after transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2021;14:115–34. https://doi.org/10.1016/j.jcin.2020.09.063.

Article  PubMed  Google Scholar 

Auffret V, Puri R, Urena M, Chamandi C, Rodriguez-Gabella T, Philippon F, Rodes-Cabau J. Conduction disturbances after transcatheter aortic valve replacement: current status and future perspectives. Circulation. 2017;136:1049–69. https://doi.org/10.1161/CIRCULATIONAHA.117.028352.

Article  PubMed  Google Scholar 

Ovcharenko EA, Klyshnikov KU, Vlad AR, Sizova IN, Kokov AN, Nushtaev DV, Yuzhalin AE, Zhuravleva IU. Computer-aided design of the human aortic root. Comput Biol Med. 2014;54:109–15. https://doi.org/10.1016/j.compbiomed.2014.08.023.

Article  CAS  PubMed  Google Scholar 

Baillargeon B, Rebelo N, Fox DD, Taylor RL, Kuhl E. The living heart project: a robust and integrative simulator for human heart function. Eur J Mech A Solids. 2014;48:38–47. https://doi.org/10.1016/j.euromechsol.2014.04.001.

Article  PubMed  PubMed Central  Google Scholar 

Morganti S, Conti M, Aiello M, Valentini A, Mazzola A, Reali A, Auricchio F. Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: two clinical cases. J Biomech. 2014;47:2547–55. https://doi.org/10.1016/j.jbiomech.2014.06.007.

Article  CAS  PubMed  Google Scholar 

Pasta S, Cannata S, Gentile G, Agnese V, Raffa GM, Pilato M, Gandolfo C. Transcatheter heart valve implantation in bicuspid patients with self-expanding device. Bioengineering (Basel). 2021. https://doi.org/10.3390/bioengineering8070091.

Article  PubMed  PubMed Central  Google Scholar 

Spadaccio C, Mazzocchi L, Timofeva I, Macron L, De Cecco CN, Morganti S, Auricchio F, Nappi F. Bioengineering case study to evaluate complications of adverse anatomy of aortic root in transcatheter aortic valve replacement: combining biomechanical modelling with ct imaging. Bioengineering (Basel). 2020. https://doi.org/10.3390/bioengineering7040121.

Article  PubMed  Google Scholar 

Faroux L, Chen S, Muntané-Carol G, Regueiro A, Philippon F, Sondergaard L, Jørgensen TH, Lopez-Aguilera J, Kodali S, Leon M, Nazif T. Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and meta-analysis. Eur Heart J. 2020;41:2771–81. https://doi.org/10.1093/eurheartj/ehz924.

Article  PubMed  Google Scholar 

Zegdi R, Ciobotaru V, Noghin M, Sleilaty G, Lafont A, Latrémouille C, Deloche A, Fabiani JN. Is it reasonable to treat all calcified stenotic aortic valves with a valved stent? Results from a human anatomic study in adults. J Am Coll Cardiol. 2008;51:579–84. https://doi.org/10.1016/j.jacc.2007.10.023.

Article  PubMed  Google Scholar 

Mummert J, Sirois E, Sun W. Quantification of biomechanical interaction of transcatheter aortic valve stent deployed in porcine and ovine hearts. Ann Biomed Eng. 2013;41:577–86. https://doi.org/10.1007/s10439-012-0694-1.

Article  PubMed  Google Scholar 

Zhang G, Liu R, Pu M, Zhou X. Biomechanical identification of high-risk patients requiring permanent pacemaker after transcatheter aortic valve replacement. Front Bioeng Biotechnol. 2021;9:615090. https://doi.org/10.3389/fbioe.2021.615090.

Article  PubMed  PubMed Central  Google Scholar 

Rocatello G, El Faquir N, De Santis G, Iannaccone F, Bosmans J, De Backer O, Sondergaard L, Segers P, De Beule M, de Jaegere P, Mortier P. Patient-specific computer simulation to elucidate the role of contact pressure in the development of new conduction abnormalities after catheter-based implantation of a self-expanding aortic valve. Circ Cardiovasc Interv. 2018;11:e005344. https://doi.org/10.1161/CIRCINTERVENTIONS.117.005344.

Article  PubMed  Google Scholar 

Dowling C, Firoozi S, Brecker SJ. First-in-human experience with patient-specific computer simulation of TAVR in bicuspid aortic valve morphology. JACC Cardiovasc Interv. 2020;13:184–92. https://doi.org/10.1016/j.jcin.2019.07.032.

Article  PubMed  Google Scholar 

Dowling C, Bavo AM, El Faquir N, Mortier P, De Jaegere P, De Backer O, Sondergaard L, Ruile P, Mylotte D, McConkey H, Rajani R. Patient-specific computer simulation of transcatheter aortic valve replacement in bicuspid aortic valve morphology. Circ Cardiovasc Imaging. 2019;12:e009178. https://doi.org/10.1161/CIRCIMAGING.119.009178.

Article  PubMed  Google Scholar 

Tahir AM, Mutlu O, Bensaali F, Ward R, Ghareeb AN, Helmy S, Othman KT, Al-Hashemi MA, Abujalala S, Chowdhury MEH, Alnabti A, Yalcin HC. Latest developments in adapting deep learning for assessing TAVR procedures and outcomes. J Clin Med. 2023;12:14. https://doi.org/10.3390/jcm12144774.

Article  Google Scholar 

Liang L, Liu M, Martin C, Sun W. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis. J R Soc Interface. 2018;15:138. https://doi.org/10.1098/rsif.2017.0844.

Article  Google Scholar 

Qi Y, Ding Y, Pan W, Zhang X, Lin X, Chen S, Zhang L, Zhou D, Ge J. Mean compression ratio of a self-expandable valve is associated with the need for pacemaker implantation after transcatheter aortic valve replacement. Eur J Med Res. 2024;29:85. https://doi.org/10.1186/s40001-023-01070-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif