The Porous SilMA Hydrogel Scaffolds Carrying Dual-Sensitive Paclitaxel Nanoparticles Promote Neuronal Differentiation for Spinal Cord Injury Repair

Liu D, Shen H, Zhang K, Shen Y, Wen R, He X, et al. Functional hydrogel Co-remolding migration and differentiation microenvironment for severe spinal cord injury repair. Adv Healthc Mater. 2024;13:e2301662.

Article  PubMed  Google Scholar 

Jiang W, Li M, He F, Zhu L. Inhibition of NLRP3 inflammasome attenuates spinal cord injury-induced lung injury in mice. J Cell Physiol. 2019;234:6012–22.

Article  CAS  PubMed  Google Scholar 

Cowan H, Lakra C, Desai M. Autonomic dysreflexia in spinal cord injury. BMJ. 2020;371:m3596.

Article  PubMed  Google Scholar 

Rao JS, Zhao C, Zhang A, Duan H, Hao P, Wei RH, et al. NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury. Proc Natl Acad Sci U S A. 2018;115:E5595–604.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Y, Zhang F, Zhong W, Liu Y, He Q, Yang M, et al. Transplantation of neural scaffolds consisting of dermal fibroblast-reprogrammed neurons and 3D silk fibrous materials promotes the repair of spinal cord injury. J Mater Chem B. 2019;7:7525–39.

Article  CAS  PubMed  Google Scholar 

Tan K, Koyama S, Sakurai H, Teranishi T, Kanada Y, Tanabe S. Wearable robotic exoskeleton for gait reconstruction in patients with spinal cord injury: a literature review. J Orthop Translat. 2021;28:55–64.

Article  PubMed  PubMed Central  Google Scholar 

Marshall J, Zhou XZ, Chen G, Yang SQ, Li Y, Wang Y, et al. Antidepression action of BDNF requires and is mimicked by galphai1/3 expression in the hippocampus. Proc Natl Acad Sci U S A. 2018;115:E3549–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milich LM, Ryan CB, Lee JK. The origin, fate, and contribution of macrophages to spinal cord injury pathology. Acta Neuropathol. 2019;137:785–97.

Article  PubMed  PubMed Central  Google Scholar 

Gao X, Han Z, Huang C, Lei H, Li G, Chen L, et al. An anti-inflammatory and neuroprotective biomimetic nanoplatform for repairing spinal cord injury. Bioact Mater. 2022;18:569–82.

PubMed  PubMed Central  Google Scholar 

Chen C, Xu HH, Liu XY, Zhang YS, Zhong L, Wang YW, et al. 3D printed collagen/silk fibroin scaffolds carrying the secretome of human umbilical mesenchymal stem cells ameliorated neurological dysfunction after spinal cord injury in rats. Regen Biomater. 2022:9:rbac014.

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Xu P, Shang L, Ma B, Zhang H, Fu L, et al. 3D collagen porous scaffold carrying PLGA-PTX/SDF-1alpha recruits and promotes neural stem cell differentiation for spinal cord injury repair. J Biomater Sci Polym Ed. 2023;34:2332–55.

Article  PubMed  Google Scholar 

Qian T, Li Z, Shang L, Huang S, Li G, Zheng W, et al. pH/Temperature responsive curcumin-loaded micelle nanoparticles promote functional repair after spinal cord injury in rats via modulation of inflammation. Tissue Eng Regen Med. 2023;20:879–92.

Article  CAS  PubMed  Google Scholar 

Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv. 2019;5:eaav5086.

Article  PubMed  PubMed Central  Google Scholar 

Zhou X, Wahane S, Friedl MS, Kluge M, Friedel CC, Avrampou K, et al. Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nat Neurosci. 2020;23:337–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Fan C, Xiao Z, Zhao Y, Zhang H, Sun J, et al. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/beta-catenin signaling for spinal cord injury repair. Biomaterials. 2018;183:114–27.

Article  CAS  PubMed  Google Scholar 

Chen Z, Zhang H, Fan C, Zhuang Y, Yang W, Chen Y, et al. Adhesive, stretchable, and spatiotemporal delivery fibrous hydrogels harness endogenous neural stem/progenitor cells for spinal cord injury repair. ACS Nano. 2022;16:1986–98.

Article  CAS  PubMed  Google Scholar 

Ghane N, Beigi MH, Labbaf S, Nasr-Esfahani MH, Kiani A. Design of hydrogel-based scaffolds for the treatment of spinal cord injuries. J Mater Chem B. 2020;8:10712–38.

Article  CAS  PubMed  Google Scholar 

Liu K, Wang Y, Dong X, Xu C, Yuan M, Wei W, et al. Injectable hydrogel system incorporating black phosphorus nanosheets and tazarotene drug for enhanced vascular and nerve regeneration in spinal cord injury repair. Small. 2024;20:e2310194.

Article  PubMed  Google Scholar 

Lu Y, Aimetti AA, Langer R, Gu Z. Bioresponsive materials. Nat Rev Mater. 2017;2:1–17.

Google Scholar 

Woods I, O’Connor C, Frugoli L, Kerr S, Gutierrez Gonzalez J, Stasiewicz M, et al. Biomimetic scaffolds for spinal cord applications exhibit stiffness-dependent immunomodulatory and neurotrophic characteristics. Adv Healthc Mater. 2022;11:e2101663.

Article  PubMed  Google Scholar 

Yao S, Yu S, Cao Z, Yang Y, Yu X, Mao HQ, et al. Hierarchically aligned fibrin nanofiber hydrogel accelerated axonal regrowth and locomotor function recovery in rat spinal cord injury. Int J Nanomedicine. 2018;13:2883–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedman JA, Windebank AJ, Moore MJ, Spinner RJ, Currier BL, Yaszemski MJ. Biodegradable polymer grafts for surgical repair of the injured spinal cord. Neurosurgery. 2002;51:742–51.

Article  PubMed  Google Scholar 

Wong DY, Krebsbach PH, Hollister SJ. Brain cortex regeneration affected by scaffold architectures. J Neurosurg. 2008;109:715–22.

Article  PubMed  Google Scholar 

Xu B, Zhao Y, Xiao Z, Wang B, Liang H, Li X, et al. A dual functional scaffold tethered with EGFR antibody promotes neural stem cell retention and neuronal differentiation for spinal cord injury repair. Adv Healthc Mater. 2017;6:1601279.

Article  PubMed  PubMed Central  Google Scholar 

Ye WS, Li HB, Yu K, Xie CQ, Wang P, Zheng YT, et al. 3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channels. Mater Des. 2020;192:9.

Article  Google Scholar 

Li W, Li J, Gao J, Li B, Xia Y, Meng Y, et al. The fine-tuning of thermosensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors. Biomaterials. 2011;32:3832–44.

Article  CAS  PubMed  Google Scholar 

Liu X, Mao Y, Huang S, Li W, Zhang W, An J, et al. Selenium nanoparticles derived from Proteus mirabilis YC801 alleviate oxidative stress and inflammatory response to promote nerve repair in rats with spinal cord injury. Regen Biomater. 2022:9:rbac042.

Article  PubMed  PubMed Central  Google Scholar 

Norton WT, Poduslo SE. Myelination in rat brain: method of myelin isolation. J Neurochem. 1973;21:749–57.

Article  CAS  PubMed  Google Scholar 

Zhou P, Xu P, Guan J, Zhang C, Chang J, Yang F, et al. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration. Colloids Surf B Biointerfaces. 2020;194:111214.

Article  CAS  PubMed  Google Scholar 

Koffler J, Zhu W, Qu X, Platoshyn O, Dulin JN, Brock J, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med. 2019;25:263–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang JP, Liu XY, Zhao F, Zhu X, Li XY, Niu XG, et al. Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury. Neural Regen Res. 2020;15:959–68.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif