FOXA1 exacerbates LPS-induced vascular endothelial cell injury in sepsis by suppressing the transcription of NRP2

Alghamdi AAA, Benwell CJ, Atkinson SJ, Lambert J, Johnson RT, Robinson SD (2020) NRP2 as an Emerging angiogenic player; promoting endothelial cell adhesion and migration by regulating recycling of alpha5 integrin. Front Cell Dev Biol 8:395. https://doi.org/10.3389/fcell.2020.00395

Article  PubMed  PubMed Central  Google Scholar 

Arina P, Singer M (2021) Pathophysiology of sepsis. Curr Opin Anaesthesiol 34:77–84. https://doi.org/10.1097/ACO.0000000000000963

Article  CAS  PubMed  Google Scholar 

Bermejo-Martin JF, Martin-Fernandez M, Lopez-Mestanza C, Duque P, Almansa R (2018) Shared features of endothelial dysfunction between sepsis and its preceding risk factors (aging and chronic disease). J Clin Med 7:400. https://doi.org/10.3390/jcm7110400

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernardo GM, Keri RA (2012) FOXA1: a transcription factor with parallel functions in development and cancer. Biosci Rep 32:113–130. https://doi.org/10.1042/BSR20110046

Article  CAS  PubMed  Google Scholar 

Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Lemma RB, Turchi L, Blanc-Mathieu R, Lucas J, Boddie P, Khan A, Manosalva Perez N et al (2022) JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res 50:D165–D173. https://doi.org/10.1093/nar/gkab1113

Article  CAS  PubMed  Google Scholar 

Chen DC (2017) Sepsis and intestinal microvascular endothelial dysfunction. Chin Med J (engl) 130:1137–1138. https://doi.org/10.4103/0366-6999.205865

Article  PubMed  Google Scholar 

Deutschman CS, Tracey KJ (2014) Sepsis: current dogma and new perspectives. Immunity 40:463–475. https://doi.org/10.1016/j.immuni.2014.04.001

Article  CAS  PubMed  Google Scholar 

Hattori Y, Hattori K, Suzuki T, Matsuda N (2017) Recent advances in the pathophysiology and molecular basis of sepsis-associated organ dysfunction: novel therapeutic implications and challenges. Pharmacol Ther 177:56–66. https://doi.org/10.1016/j.pharmthera.2017.02.040

Article  CAS  PubMed  Google Scholar 

Ince C, Mayeux PR, Nguyen T, Gomez H, Kellum JA, Ospina-Tascon GA, Hernandez G, Murray P, De Backer D, Workgroup AX (2016) The endothelium in sepsis. Shock 45:259–270. https://doi.org/10.1097/SHK.0000000000000473

Article  CAS  PubMed  PubMed Central  Google Scholar 

Islam R, Mishra J, Bodas S, Bhattacharya S, Batra SK, Dutta S, Datta K (2022) Role of neuropilin-2-mediated signaling axis in cancer progression and therapy resistance. Cancer Metastasis Rev 41:771–787. https://doi.org/10.1007/s10555-022-10048-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jackson BC, Carpenter C, Nebert DW, Vasiliou V (2010) Update of human and mouse forkhead box (FOX) gene families. Hum Genom 4:345–352. https://doi.org/10.1186/1479-7364-4-5-345

Article  CAS  Google Scholar 

Jeon D, Kim SJ, Kim HS (2017) Anti-inflammatory evaluation of the methanolic extract of Taraxacum officinale in LPS-stimulated human umbilical vein endothelial cells. BMC Complement Altern Med 17:508. https://doi.org/10.1186/s12906-017-2022-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joffre J, Hellman J, Ince C, Ait-Oufella H (2020) Endothelial responses in sepsis. Am J Respir Crit Care Med 202:361–370. https://doi.org/10.1164/rccm.201910-1911TR

Article  CAS  PubMed  Google Scholar 

Li B, Niu S, Geng H, Yang C, Zhao C (2021) Berberine attenuates neonatal sepsis in mice by inhibiting FOXA1 and NF-kappaB signal transduction via the induction of MiR-132-3p. Inflammation 44:2395–2406. https://doi.org/10.1007/s10753-021-01510-2

Article  CAS  PubMed  Google Scholar 

Liu G, Tian R, Mao H, Ren Y (2022) Effect of lncRNA SNHG15 on LPS-induced vascular endothelial cell apoptosis, inflammatory factor expression and oxidative stress by targeting miR-362-3p. Cell Mol Biol (noisy-Le-Grand) 67:220–227. https://doi.org/10.14715/cmb/2021.67.6.29

Article  PubMed  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Article  CAS  PubMed  Google Scholar 

Lu S, Wu H, Xu J, He Z, Li H, Ning C (2020) SIKIAT1/miR-96/FOXA1 axis regulates sepsis-induced kidney injury through induction of apoptosis. Inflamm Res 69:645–656. https://doi.org/10.1007/s00011-020-01350-0

Article  CAS  PubMed  Google Scholar 

Lu H, Chen Y, Wang X, Yang Y, Ding M, Qiu F (2022) Circular RNA HIPK3 aggravates sepsis-induced acute kidney injury via modulating the microRNA-338/forkhead box A1 axis. Bioengineered 13:4798–4809. https://doi.org/10.1080/21655979.2022.2032974

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo J, Fang H, Wang D, Hu J, Zhang W, Jiang R (2024) Molecular mechanism of SOX18 in lipopolysaccharide-induced injury of human umbilical vein endothelial cells. Crit Rev Immunol 44:1–12. https://doi.org/10.1615/CritRevImmunol.2023050792

Article  CAS  PubMed  Google Scholar 

Martin-Fernandez M, Tamayo-Velasco A, Aller R, Gonzalo-Benito H, Martinez-Paz P, Tamayo E (2021) Endothelial dysfunction and neutrophil degranulation as central events in sepsis physiopathology. Int J Mol Sci 22:6272. https://doi.org/10.3390/ijms22126272

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mucka P, Levonyak N, Geretti E, Zwaans BMM, Li X, Adini I, Klagsbrun M, Adam RM, Bielenberg DR (2016) Inflammation and lymphedema are exacerbated and prolonged by neuropilin 2 deficiency. Am J Pathol 186:2803–2812. https://doi.org/10.1016/j.ajpath.2016.07.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan D, Zhu J, Cao L, Zhu B, Lin L (2022) Ruscogenin attenuates lipopolysaccharide-induced septic vascular endothelial dysfunction by modulating the miR-146a-5p/NRP2/SSH1 axis. Drug Des Devel Ther 16:1099–1106. https://doi.org/10.2147/DDDT.S356451

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shapiro NI, Schuetz P, Yano K, Sorasaki M, Parikh SM, Jones AE, Trzeciak S, Ngo L, Aird WC (2010) The association of endothelial cell signaling, severity of illness, and organ dysfunction in sepsis. Crit Care 14:R182. https://doi.org/10.1186/cc9290

Article  PubMed  PubMed Central  Google Scholar 

Songjang W, Paiyabhroma N, Jumroon N, Jiraviriyakul A, Nernpermpisooth N, Seenak P, Kumphune S, Thaisakun S, Phaonakrop N, Roytrakul S et al (2023) Proteomic profiling of early secreted proteins in response to lipopolysaccharide-induced vascular endothelial cell EA.hy926 injury. Biomedicines 11:3065. https://doi.org/10.3390/biomedicines11113065

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stevens M, Oltean S (2019) Modulation of receptor tyrosine kinase activity through alternative splicing of ligands and receptors in the VEGF-A/VEGFR axis. Cells 8:288. https://doi.org/10.3390/cells8040288

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vincent JL, Ince C, Pickkers P (2021) Endothelial dysfunction: a therapeutic target in bacterial sepsis? Expert Opin Ther Targets 25:733–748. https://doi.org/10.1080/14728222.2021.1988928

Article  CAS  PubMed  Google Scholar 

Winn RK, Harlan JM (2005) The role of endothelial cel

留言 (0)

沒有登入
gif