γδ T cells as critical anti-tumor immune effectors

Saito, H. et al. Complete primary structure of a heterodimeric T-cell receptor deduced from eDNA sequences. Nature 309, 757–762 (1984).

Brenner, M. B. et al. Identification of a putative second T-cell receptor. Nature 322, 145–149 (1986).

Article  CAS  PubMed  Google Scholar 

Hayday, A. C. γδ cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000).

Article  CAS  PubMed  Google Scholar 

Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

Article  CAS  PubMed  Google Scholar 

Gao, Y. et al. γδ T cells provide an early source of interferon γ in tumor immunity. J. Exp. Med. 198, 433–442 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Z. et al. Protective immunosurveillance and therapeutic antitumor activity of γδ T cells demonstrated in a mouse model of prostate cancer. J. Immunol. 180, 6044–6053 (2008).

Article  CAS  PubMed  Google Scholar 

Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayday, A. C. γδ T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009).

Article  CAS  PubMed  Google Scholar 

Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonneville, M., O’Brien, R. L. & Born, W. K. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 10, 467–478 (2010).

Article  CAS  PubMed  Google Scholar 

Silva-Santos, B., Mensurado, S. & Coffelt, S. B. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat. Rev. Cancer 19, 392–404 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pellicci, D. G., Koay, H.-F. & Berzins, S. P. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat. Rev. Immunol. 20, 756–770 (2020).

Article  CAS  PubMed  Google Scholar 

Hu, Y. et al. T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct. Target. Ther. 8, 434 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carding, S. R. & Egan, P. J. γδ T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2, 336–345 (2002).

Article  CAS  PubMed  Google Scholar 

Hunter, S. et al. Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations. J. Hepatol. 69, 654–665 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davey, M. S. et al. Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat. Commun. 8, 14760 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Khairallah, C. et al. γδ T cells confer protection against murine cytomegalovirus (MCMV). PLoS Pathog. 11, e1004702 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Ravens, S. et al. Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol. 18, 393–401 (2017).

Article  CAS  PubMed  Google Scholar 

Khairallah, C., Déchanet-Merville, J. & Capone, M. γδ T cell-mediated immunity to cytomegalovirus infection. Front. Immunol. 8, 105 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Street, S. E. A. et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδ T cells. J. Exp. Med. 199, 879–884 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, D., Wu, P., Qiu, F., Wei, Q. & Huang, J. Human γδT-cell subsets and their involvement in tumor immunity. Cell. Mol. Immunol. 14, 245–253 (2017).

Article  CAS  PubMed  Google Scholar 

Willcox, C. R., Davey, M. S. & Willcox, B. E. Development and selection of the human Vγ9Vδ2+ T-cell repertoire. Front. Immunol. 9, 1501 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Wrobel, P. et al. Lysis of a broad range of epithelial tumour cells by human γδ T cells: involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition. Scand. J. Immunol. 66, 320–328 (2007).

Article  CAS  PubMed  Google Scholar 

Rincon-Orozco, B. et al. Activation of Vγ9Vδ2 T cells by NKG2D. J. Immunol. 175, 2144–2151 (2005).

Article  CAS  PubMed  Google Scholar 

Tokuyama, H. et al. Vγ9Vδ2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs—rituximab and trastuzumab. Int. J. Cancer 122, 2526–2534 (2008).

Article  CAS  PubMed  Google Scholar 

Brandes, M., Willimann, K. & Moser, B. Professional antigen-presentation function by human γδ T cells. Science 309, 264–268 (2005).

Article  CAS  PubMed  Google Scholar 

Brandes, M. et al. Cross-presenting human γδ T cells induce robust CD8+ αβ T cell responses. Proc. Natl Acad. Sci. USA 106, 2307–2312 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krangel, M. S., Yssel, H., Brocklehurst, C. & Spits, H. A distinct wave of human T cell receptor γ/δ lymphocytes in the early fetal thymus: evidence for controlled gene rearrangement and cytokine production. J. Exp. Med. 172, 847–859 (1990).

Article  CAS  PubMed  Google Scholar 

Di Lorenzo, B., Ravens, S. & Silva-Santos, B. High-throughput analysis of the human thymic Vδ1+ T cell receptor repertoire. Sci. Data 6, 115 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Sanz, M. et al. Deep characterization of human γδ T cell subsets defines shared and lineage-specific traits. Front. Immunol. 14, 1148988 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poggi, A. et al. Vδ1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res. 64, 9172–9179 (2004).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif