Gonzalez IL, Sylvester JE. Complete sequence of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Genomics. 1995;27(2):320–8.
Article CAS PubMed Google Scholar
Little RD, Braaten DC. Genomic organization of human 5S rDNA and sequence of one tandem repeat. Genomics. 1989;4(3):376–83.
Article CAS PubMed Google Scholar
Sorensen PD, Frederiksen S. Characterization of human 5S rRNA genes. Nucleic Acids Res. 1991;19(15):4147–51.
Article CAS PubMed PubMed Central Google Scholar
Cerqueira AV, Lemos B. Ribosomal DNA and the nucleolus as keystones of nuclear architecture, organization, and function. Trends Genet. 2019;35(10):710–23.
Article CAS PubMed PubMed Central Google Scholar
Smirnov E, Chmurciakova N, Cmarko D. Hum rDNA cancer Cells, 2021. 10(12).
Kopp K, et al. Pol I transcription and pre-rRNA processing are coordinated in a transcription-dependent manner in mammalian cells. Mol Biol Cell. 2007;18(2):394–403.
Article CAS PubMed PubMed Central Google Scholar
Henderson AS, Warburton D, Atwood KC. Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci U S A. 1972;69(11):3394–8.
Article CAS PubMed PubMed Central Google Scholar
Steffensen DM, Duffey P, Prensky W. Localisation of 5S ribosomal RNA genes on human chromosome 1. Nature. 1974;252(5485):741–3.
Article CAS PubMed Google Scholar
Croce CM, et al. Suppression of production of mouse 28S ribosomal RNA in mouse-human hybrids segregating mouse chromosomes. Proc Natl Acad Sci U S A. 1977;74(2):694–7.
Article CAS PubMed PubMed Central Google Scholar
Grozdanov P, Georgiev O, Karagyozov L. Complete sequence of the 45-kb mouse ribosomal DNA repeat: analysis of the intergenic spacer. Genomics. 2003;82(6):637–43.
Article CAS PubMed Google Scholar
Matsuda Y, et al. Chromosomal mapping of mouse 5S rRNA genes by direct R-banding fluorescence in situ hybridization. Cytogenet Cell Genet. 1994;66(4):246–9.
Article CAS PubMed Google Scholar
Chebrout M et al. Transcription of rRNA in early mouse embryos promotes chromatin reorganization and expression of major satellite repeats. J Cell Sci, 2022. 135(6).
Kang J, et al. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther. 2021;6(1):323.
Article CAS PubMed PubMed Central Google Scholar
D’Aquila P, et al. Methylation of the ribosomal RNA gene promoter is associated with aging and age-related decline. Aging Cell. 2017;16(5):966–75.
Article PubMed PubMed Central Google Scholar
Srivastava R, Srivastava R, Ahn SH. The epigenetic pathways to ribosomal DNA silencing. Microbiol Mol Biol Rev. 2016;80(3):545–63.
Article CAS PubMed PubMed Central Google Scholar
McStay B, Grummt I. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol. 2008;24:131–57.
Article CAS PubMed Google Scholar
Santoro R, Grummt I. Molecular mechanisms mediating methylation-dependent silencing of ribosomal gene transcription. Mol Cell. 2001;8(3):719–25.
Article CAS PubMed Google Scholar
Bestor TH. DNA methylation - evolution of a bacterial immune function into a regulator of gene-expression and genome structure in higher eukaryotes. Philosophical Trans Royal Soc Lond Ser B-Biological Sci. 1990;326(1235):179–87.
Moore LD, Le T, Fan GP. DNA Methylation its Basic Function Neuropsychopharmacol. 2013;38(1):23–38.
Xiong Z, et al. EWAS Open platform: integrated data, knowledge and toolkit for epigenome-wide association study. Nucleic Acids Res. 2022;50(D1):D1004–9.
Article CAS PubMed Google Scholar
Zhang MC, et al. MethBank 4.0: an updated database of DNA methylation across a variety of species. Nucleic Acids Res. 2023;51(D1):D208–16.
Article CAS PubMed Google Scholar
Zong W, et al. scMethBank: a database for single-cell whole genome DNA methylation maps. Nucleic Acids Res. 2022;50(D1):D380–6.
Article CAS PubMed Google Scholar
Wang M, Lemos B. Ribosomal DNA harbors an evolutionarily conserved clock of biological aging. Genome Res. 2019;29(3):325–33.
Article CAS PubMed PubMed Central Google Scholar
Furuta A, Nakamura T. DNA hypomethylation circuit of mouse rDNA repeats in the germ cell lineage. Biochem Biophys Res Commun. 2017;490(2):429–33.
Article CAS PubMed Google Scholar
Shao FQ et al. Methylation of 45S ribosomal DNA (rDNA) is associated with cancer and aging in humans International Journal of Genomics, 2021. 2021.
Potabattula R, et al. Increasing methylation of sperm rDNA and other repetitive elements in the aging male mammalian germline. Aging Cell. 2020;19(8):e13181.
Article CAS PubMed PubMed Central Google Scholar
Oakes CC, et al. Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proc Natl Acad Sci USA. 2003;100(4):1775–80.
Article CAS PubMed PubMed Central Google Scholar
Potabattula R, et al. Ribosomal DNA methylation in human and mouse oocytes increases with age. Aging. 2022;14(3):1214–32.
Article CAS PubMed PubMed Central Google Scholar
Ortega-Recalde O, et al. Zebrafish preserve global germline DNA methylation while sex-linked rDNA is amplified and demethylated during feminisation. Nat Commun. 2019;10(1):3053.
Article PubMed PubMed Central Google Scholar
Watada E et al. Age-dependent ribosomal DNA variations in mice. Mol Cell Biol, 2020. 40(22).
Flunkert J, et al. Genetic and epigenetic changes in clonal descendants of irradiated human fibroblasts. Exp Cell Res. 2018;370(2):322–32.
Article CAS PubMed Google Scholar
Murach KA et al. Late-life exercise mitigates skeletal muscle epigenetic aging. Aging Cell, 2022. 21(1).
Gensous N et al. Aging and caloric restriction modulate the DNA methylation profile of the ribosomal RNA locus in human and rat liver. Nutrients, 2020. 12(2).
Pietrzak M, et al. Epigenetic silencing of nucleolar rRNA genes in Alzheimer’s disease. PLoS ONE. 2011;6(7):e22585.
Article CAS PubMed PubMed Central Google Scholar
Razzaq A et al. Ribosomal DNA copy number variation is coupled with DNA methylation changes at the 45S rdna locus. Epigenetics, 2023. 18(1).
Raval A, et al. Reduced rRNA expression and increased rDNA promoter methylation in CD34 + cells of patients with myelodysplastic syndromes. Blood. 2012;120(24):4812–8.
留言 (0)