Gd-GQDs as nanotheranostic platform for the treatment of HPV-positive oropharyngeal cancer

Gormley M, Creaney G, Schache A, Ingarfield K, Conway DI. Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors. Br Dent J. 2022;233:780–6.

Article  PubMed  PubMed Central  Google Scholar 

Vidal L, Gillison ML. Human papillomavirus in HNSCC: recognition of a distinct disease type. Hematol Oncol Clin North Am. 2008;22:1125–42.

Article  PubMed  Google Scholar 

Thompson-Harvey A, Yetukuri M, Hansen AR, Simpson MC, Adjei Boakye E, Varvares MA, Osazuwa-Peters N. Rising incidence of late-stage head and neck cancer in the United States. Cancer. 2020;126:1090–101.

Article  PubMed  Google Scholar 

Sabatini ME, Chiocca S. Human papillomavirus as a driver of head and neck cancers. Br J Cancer. 2020;122:306–14.

Article  PubMed  Google Scholar 

Chaturvedi AK, Engels EA, Anderson WF, Gillison ML. Incidence trends for human papillomavirus-related and-unrelated oral squamous cell carcinomas in the United States. J Clin Oncol. 2008;26:612–9.

Article  PubMed  Google Scholar 

Mody MD, Rocco JW, Yom SS, Haddad RI, Saba NF. Head and neck cancer. Lancet. 2021;398:2289–99.

Article  PubMed  Google Scholar 

Cramer JD, Burtness B, Le QT, Ferris RL. The changing therapeutic landscape of head and neck cancer. Nat Rev Clin Oncol. 2019;16:669–83.

Article  PubMed  Google Scholar 

O’Malley BW Jr, Weinstein GS, Snyder W, Hockstein NG. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope. 2006;116:1465–72.

Article  PubMed  Google Scholar 

Langendijk JA, Doornaert P, Verdonck-de Leeuw IM, Leemans CR, Aaronson NK, Slotman BJ. Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J Clin Oncol. 2008;26:3770–6.

Article  PubMed  Google Scholar 

Vlacich G, Spratt DE, Diaz R, Phillips JG, Crass J, Li C-I, Shyr Y, Cmelak AJ. Dose to the inferior pharyngeal constrictor predicts prolonged gastrostomy tube dependence with concurrent intensity-modulated radiation therapy and chemotherapy for locally-advanced head and neck cancer. Radiother Oncol. 2014;110:435–40.

Article  PubMed  Google Scholar 

Zhai R-P, Kong F-F, Du C-R, Hu C-S, Ying H-M. Radiation-induced hypothyroidism after IMRT for nasopharyngeal carcinoma: clinical and dosimetric predictors in a prospective cohort study. Oral Oncol. 2017;68:44–9.

Article  PubMed  Google Scholar 

Chow JC, Au KH, Mang OW, Cheung KM, Ngan RK. Risk, pattern and survival impact of second primary tumors in patients with nasopharyngeal carcinoma following definitive intensity-modulated radiotherapy. Asia Pac J Clin Oncol. 2019;15:48–55.

Article  PubMed  Google Scholar 

Yao J-J, Zhou G-Q, Lin L, Zhang W-J, Peng Y-L, Chen L, Tang L-L, Mao Y-P, Ma J, Sun Y. Dose-volume factors associated with ear disorders following intensity modulated radiotherapy in nasopharyngeal carcinoma. Sci Rep. 2015;5:13525.

Article  PubMed  PubMed Central  Google Scholar 

Hsin C-H, Tseng H-C, Lin H-P, Chen T-H. Post-irradiation otitis media, rhinosinusitis, and their interrelationship in nasopharyngeal carcinoma patients treated by IMRT. Eur Arch Otorhinolaryngol. 2016;273:471–7.

Article  PubMed  Google Scholar 

Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med. 2023;8:e10498.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bacon M, Bradley SJ, Nann T. Graphene quantum dots. Part Part Syst Charact. 2014;31:415–28.

Article  CAS  Google Scholar 

Schroeder KL, Goreham RV, Nann T. Graphene quantum dots for theranostics and bioimaging. Pharm Res. 2016;33:2337–57.

Article  PubMed  CAS  Google Scholar 

Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc. 2012;134:15–8.

Article  PubMed  CAS  Google Scholar 

Ray PD, Huang B-W, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981–90.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals. 2016;29:365–76.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lux F, Sancey L, Bianchi A, Crémillieux Y, Roux S, Tillement O. Gadolinium-based nanoparticles for theranostic MRI-radiosensitization. Nanomedicine. 2015;10:1801–15.

Article  PubMed  CAS  Google Scholar 

Salehnia F, Faridbod F, Dezfuli AS, Ganjali MR, Norouzi P. Cerium (III) ion sensing based on graphene quantum dots fluorescent turn-off. J Fluoresc. 2017;27:331–8.

Article  PubMed  CAS  Google Scholar 

Ding H, Wang D, Sadat A, Li Z, Hu X, Xu M, de Morais PC, Ge B, Sun S, Ge J. Single-atom gadolinium anchored on graphene quantum dots as a magnetic resonance signal amplifier. ACS Appl Bio Mater. 2021;4:2798–809.

Article  PubMed  CAS  Google Scholar 

Shanehsazzadeh S, Gruettner C, Lahooti A, Mahmoudi M, Allen BJ, Ghavami M, Daha FJ, Oghabian MA. Monoclonal antibody conjugated magnetic nanoparticles could target MUC-1-positive cells in vitro but not in vivo. Contrast Media Mol Imaging. 2015;10:225–36.

Article  PubMed  CAS  Google Scholar 

Yilmaz A, Yurdakoc M, Bernarding J, Vieth HM, Braun J, Yurt A. Paramagnetic contribution of serum iron to the spin-spin relaxation rate (1/T 2) measured by MRI. Appl Magn Reson. 2002;22:11–22.

Article  CAS  Google Scholar 

Wang F, Bae K, Huang Z, Xue J. Two-photon graphene quantum dot modified Gd 2 O 3 nanocomposites as a dual-mode MRI contrast agent and cell labelling agent. Nanoscale. 2018;10:5642–9.

Article  PubMed  CAS  Google Scholar 

Pei S, Wei Q, Huang K, Cheng H-M, Ren W. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat Commun. 2018;9:145.

Article  PubMed  PubMed Central  Google Scholar 

Pan L, Sun S, Zhang A, Jiang K, Zhang L, Dong C, Huang Q, Wu A, Lin H. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater. 2015;27:7782–7.

Article  PubMed  CAS  Google Scholar 

Pathak PK, Kumar A, Prasad BB. Functionalized nitrogen doped graphene quantum dots and bimetallic Au/Ag core-shell decorated imprinted polymer for electrochemical sensing of anticancerous hydroxyurea. Biosens Bioelectron. 2019;127:10–8.

Article  PubMed  CAS  Google Scholar 

Tan X, Li Y, Li X, Zhou S, Fan L, Yang S. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem Commun. 2015;51:2544–6.

Article  CAS  Google Scholar 

Ruan J, Wang Y, Li F, Jia R, Zhou G, Shao C, Zhu L, Cui M, Yang D-P, Ge S. Graphene quantum dots for radiotherapy. ACS Appl Mater Interfaces. 2018;10:14342–55.

Article  PubMed  CAS  Google Scholar 

Christensen IL, Sun Y-P, Juzenas P. Carbon dots as antioxidants and prooxidants. J Biomed Nanotechnol. 2011;7:667–76.

Article  PubMed  CAS 

留言 (0)

沒有登入
gif