Lipid metabolism reprogramming in renal cell carcinomas

Global OWH, Estimates H. Deaths by Cause. Age, Sex, by Country and by Region. 2020;2020:2000.

Google Scholar 

Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, Kuczyk MA, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67(5):913–24.

Article  PubMed  Google Scholar 

Siegel R, Miller K, Fuchs H, Jemal A. Erratum to “Cancer statistics, 2021.” CA Cancer J Clin. 2021;71(1):7–33.

Article  PubMed  Google Scholar 

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA: a cancer journal for clinicians. 2022;72(1):7.

Majidpoor J, Mortezaee K. Interleukin-2 therapy of cancer-clinical perspectives. Int Immunopharmacol. 2021;98:107836.

Article  CAS  PubMed  Google Scholar 

McKay RR, Bosse D, Choueiri TK (2018). Evolving systemic treatment landscape for patients with advanced renal cell carcinoma. Journal of Clinical Oncology.

Sunshine H, Iruela-Arispe ML. Membrane lipids and cell signaling. Curr Opin Lipidol. 2017;28(5):408–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–24.

Article  PubMed  PubMed Central  Google Scholar 

Fendt S-M, Frezza C, Erez A. Targeting metabolic plasticity and flexibility dynamics for cancer therapy. Cancer Discov. 2020;10(12):1797–807.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4–22.

Article  CAS  PubMed  Google Scholar 

Peck B, Schulze A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends in cancer. 2019;5(11):693–703.

Article  CAS  PubMed  Google Scholar 

Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, et al. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev. 2020;159:245–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corn KC, Windham MA, Rafat M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog Lipid Res. 2020;80:101055.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Auciello FR, Bulusu V, Oon C, Tait-Mulder J, Berry M, Bhattacharyya S, Tumanov S, et al. A stromal lysolipid–autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discov. 2019;9(5):617–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Attané C, Muller C. Drilling for oil: tumor-surrounding adipocytes fueling cancer. Trends in Cancer. 2020;6(7):593–604.

Article  PubMed  Google Scholar 

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: a cancer journal for clinicians. 2018;68(1):7–30.

Capitanio U, Montorsi F. Renal cancer. The Lancet. 2016;387(10021):894–906.

Article  Google Scholar 

Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J, Gore JL, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74–84.

Article  PubMed  Google Scholar 

Gansler T, Fedewa S, Amin MB, Lin CC, Jemal A. Trends in reporting histological subtyping of renal cell carcinoma: association with cancer center type. Hum Pathol. 2018;74:99–108.

Article  PubMed  Google Scholar 

Theis RP, Dolwick Grieb SM, Burr D, Siddiqui T, Asal NR. Smoking, environmental tobacco smoke, and risk of renal cell cancer: a population-based case-control study. BMC Cancer. 2008;8:1–11.

Article  Google Scholar 

Scelo G, Larose TL. Epidemiology and risk factors for kidney cancer. J Clin Oncol. 2018;36(36):3574.

Article  CAS  PubMed Central  Google Scholar 

Kim CS, Han K-D, Choi HS, Bae EH, Ma SK, Kim SW. Association of hypertension and blood pressure with kidney cancer risk: a nationwide population-based cohort study. Hypertension. 2020;75(6):1439–46.

Article  CAS  PubMed  Google Scholar 

Johansson M, Carreras-Torres R, Scelo G, Purdue MP, Mariosa D, Muller DC, Timpson NJ, et al. The influence of obesity-related factors in the etiology of renal cell carcinoma—A mendelian randomization study. PLoS Med. 2019;16(1): e1002724.

Article  PubMed  PubMed Central  Google Scholar 

Choueiri TK, Je Y, Cho E. Analgesic use and the risk of kidney cancer: A meta-analysis of epidemiologic studies. Int J Cancer. 2014;134(2):384–96.

Article  PubMed  Google Scholar 

Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogenesis. 2016;5(1):e189-e.

Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

Article  CAS  PubMed  Google Scholar 

Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149(3):656–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ackerman D, Simon MC. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol. 2014;24(8):472–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ragone R, Sallustio F, Piccinonna S, Rutigliano M, Vanessa G, Palazzo S, Lucarelli G, et al. Renal cell carcinoma: a study through NMR-based metabolomics combined with transcriptomics. 2016;4(1):7.

Google Scholar 

Bianchi C, Meregalli C, Bombelli S, Di Stefano V, Salerno F, Torsello B, De Marco S, et al. The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. 2017;8(69): 113502.

Google Scholar 

Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, Cagiano S, Bufo P, Lastilla G, et al. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget. 2015; 6: 13371–86.3823:13371–86.

Lucarelli G, Rutigliano M, Sallustio F, Ribatti D, Giglio A, Signorile ML, Grossi V, et al. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. 2018;10(12):3957.

Milella M, Rutigliano M, Lasorsa F, Ferro M, Bianchi R, Fallara G, Crocetto F, et al. The role of MUC1 in renal cell carcinoma. 2024;14(3):315.

Lucarelli G, Rutigliano M, Loizzo D, di Meo NA, Lasorsa F, Mastropasqua M, Maiorano E, et al. MUC1 tissue expression and its soluble form CA15–3 identify a clear cell renal cell carcinoma with distinct metabolic profile and poor clinical outcome. 2022;23(22):13968.

Qiu B, Ackerman D, Sanchez DJ, Li B, Ochocki JD, Grazioli A, Bobrovnikova-Marjon E, et al. HIF2α-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma. Cancer Discov. 2015;5(6):652–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, Lac S, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci. 2015;112(8):2473–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Mashtoly SF, Yosef HK, Petersen D, Mavarani L, Maghnouj A, Hahn S, Kötting C, et al. Label-free Raman spectroscopic imaging monitors the integral physiologically relevant drug responses in cancer cells. Anal Chem. 2015;87(14):7297–304.

Article  CAS  PubMed  Google Scholar 

Steuwe C, Patel II, Ul-Hasan M, Schreiner A, Boren J, Brindle KM, Reichelt S, et al. CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells. J Biophotonics. 2014;7(11–12):906–13.

Article  CAS  PubMed  Google Scholar 

Daniëls VW, Smans K, Royaux I, Chypre M, Swinnen JV, Zaidi N. Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment. PLoS ONE. 2014;9(9): e106913.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif