Analyzing the topological properties of resting-state brain function network connectivity based on graph theoretical methods in patients with high myopia

Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol Opt. 2012;32(1):3–16. https://doi.org/10.1111/j.1475-1313.2011.00884.x. PMID: 22150586.

Morgan IG, Ohno-Matsui K, Saw SM, Myopia. Lancet. 2012;379(9827):1739-48. https://doi.org/10.1016/S0140-6736(12)60272-4. PMID: 22559900.

Zhuang M, Xie H, Zhang Y, Li S, Xiao P, Jiang Y, Zhou H, Chu Z, Zhao J. Prevalence and influence factors for myopia and high myopia in schoolchildren in Shandong, China. Cent Eur J Public Health. 2022;30(3):190–195. https://doi.org/10.21101/cejph.a7158. PMID: 36239368.

Jonas JB, Panda-Jonas S. Epidemiologie und Anatomie der Myopie [Epidemiology and anatomy of myopia]. Ophthalmologe. 2019;116(6):499–508. German. https://doi.org/10.1007/s00347-019-0858-6. PMID: 30796602.

Dolgin E. The myopia boom. Nature. 2015;519(7543):276-8. https://doi.org/10.1038/519276a. PMID: 25788077.

Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036-42. https://doi.org/10.1016/j.ophtha.2016.01.006. Epub 2016 Feb 11. PMID: 26875007.

Vongphanit J, Mitchell P, Wang JJ. Prevalence and progression of myopic retinopathy in an older population. Ophthalmology. 2002;109(4):704 – 11. https://doi.org/10.1016/s0161-6420(01)01024-7. PMID: 11927427.

Wong TY, Ferreira A, Hughes R, Carter G, Mitchell P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. Am J Ophthalmol. 2014;157(1):9–25.e12. doi: 10.1016/j.ajo.2013.08.010. Epub 2013 Oct 5. PMID: 24099276.

Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 2010;52(3):1059–69. https://doi.org/10.1016/j.neuroimage.2009.10.003. Epub 2009 Oct 9. PMID: 19819337.

Article  PubMed  Google Scholar 

Sporns O. Structure and function of complex brain networks. Dialogues Clin Neurosci. 2013;15(3):247–62. https://doi.org/10.31887/DCNS.2013.15.3/osporns. PMID: 24174898; PMCID: PMC3811098.

Article  PubMed  PubMed Central  Google Scholar 

Cheng Y, Chen XL, Shi L, Li SY, Huang H, Zhong PP, Wu XR. Abnormal functional connectivity between cerebral hemispheres in patients with high myopia: a resting FMRI study based on Voxel-Mirrored Homotopic Connectivity. Front Hum Neurosci. 2022;16:910846. https://doi.org/10.3389/fnhum.2022.910846. PMID: 35814958; PMCID: PMC9259881.

Article  PubMed  PubMed Central  Google Scholar 

Zhai L, Li Q, Wang T, Dong H, Peng Y, Guo M, Qin W, Yu C. Altered functional connectivity density in high myopia. Behav Brain Res. 2016;303:85–92. https://doi.org/10.1016/j.bbr.2016.01.046. Epub 2016 Jan 22. PMID: 26808608.

Article  PubMed  Google Scholar 

Wei B, Fu WW, Ji Y, Cheng Q, Shu BL, Huang QY, Wu XR. Exploration of hippocampal functional connectivity alterations in patients with high myopia via seed-based functional connectivity analysis. Clin Ophthalmol. 2023;17:3443–51. PMID: 38026590; PMCID: PMC10656840.

Article  PubMed  PubMed Central  Google Scholar 

Zhao L, Guan M, Zhu X, Karama S, Khundrakpam B, Wang M, Dong M, Qin W, Tian J, Evans AC, Shi D. Aberrant topological patterns of structural cortical networks in Psychogenic Erectile Dysfunction. Front Hum Neurosci. 2015;9:675. PMID: 26733849; PMCID: PMC4683194.

Article  PubMed  PubMed Central  Google Scholar 

Yun JY, Kim YK. Graph theory approach for the structural-functional brain connectome of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110401. https://doi.org/10.1016/j.pnpbp.2021.110401. Epub 2021 Jul 12. PMID: 34265367.

Article  CAS  PubMed  Google Scholar 

Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory. Clin Neurophysiol. 2015;126(11):2132–41. https://doi.org/10.1016/j.clinph.2015.02.060. Epub 2015 Apr 1. PMID: 25907414.

Article  PubMed  Google Scholar 

Farahani FV, Karwowski W, D’Esposito M, Betzel RF, Douglas PK, Sobczak AM, Bohaterewicz B, Marek T, Fafrowicz M. Diurnal variations of resting-state fMRI data: a graph-based analysis. NeuroImage. 2022;256:119246. https://doi.org/10.1016/j.neuroimage.2022.119246. Epub 2022 Apr 25. PMID: 35477020; PMCID: PMC9799965.

Article  PubMed  Google Scholar 

Wang H, Wen H, Li J, Chen Q, Li S, Wang Z. Disrupted topological organization of white matter structural networks in high myopia patients revealed by diffusion kurtosis imaging and tractography. Front Neurosci. 2023;17:1158928. https://doi.org/10.3389/fnins.2023.1158928. PMID: 37425009; PMCID: PMC10324656.

Article  PubMed  PubMed Central  Google Scholar 

Tononi G, Edelman GM, Sporns O. Complexity and coherency: integrating information in the brain. Trends Cogn Sci. 1998;2(12):474 – 84. https://doi.org/10.1016/s1364-6613(98)01259-5. PMID: 21227298.

Shu N, Liu Y, Li J, Li Y, Yu C, Jiang T. Altered anatomical network in early blindness revealed by diffusion tensor tractography. PLoS ONE. 2009;4(9):e7228. https://doi.org/10.1371/journal.pone.0007228. PMID: 19784379; PMCID: PMC2747271.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao Q, Shu N, An L, Wang P, Sun L, Xia MR, Wang JH, Gong GL, Zang YF, Wang YF, He Y. Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder. J Neurosci. 2013;33(26):10676-87. https://doi.org/10.1523/JNEUROSCI.4793-12.2013. PMID: 23804091; PMCID: PMC6618487.

Sporns O, Tononi G, Kötter R. The human connectome: a structural description of the human brain. PLoS Comput Biol. 2005;1(4):e42. https://doi.org/10.1371/journal.pcbi.0010042. PMID: 16201007; PMCID: PMC1239902.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao X, Vasilakos AV, He Y. Small-world human brain networks: Perspectives and challenges. Neurosci Biobehav Rev. 2017;77:286–300. https://doi.org/10.1016/j.neubiorev.2017.03.018. Epub 2017 Apr 5. PMID: 28389343.

Prather MD, Lavenex P, Mauldin-Jourdain ML, Mason WA, Capitanio JP, Mendoza SP, Amaral DG. Increased social fear and decreased fear of objects in monkeys with neonatal amygdala lesions. Neuroscience. 2001;106(4):653-8. https://doi.org/10.1016/s0306-4522(01)00445-6. PMID: 11682152.

Gangopadhyay P, Chawla M, Dal Monte O, Chang SWC. Prefrontal-amygdala circuits in social decision-making. Nat Neurosci. 2021;24(1):5–18. https://doi.org/10.1038/s41593-020-00738-9. Epub 2020 Nov 9. PMID: 33169032; PMCID: PMC7899743.

Article  CAS  PubMed  Google Scholar 

Ortiz S, Latsko MS, Fouty JL, Dutta S, Adkins JM, Jasnow AM. Anterior Cingulate Cortex and ventral hippocampal inputs to the Basolateral Amygdala selectively Control Generalized Fear. J Neurosci. 2019;39(33):6526–39. https://doi.org/10.1523/JNEUROSCI.0810-19.2019. Epub 2019 Jun 17. PMID: 31209172; PMCID: PMC6697404.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boccaletti S, Latora V, Moreno Y, et al. Complex networks: structure and dynamics. Phys Rep. 2006;424(4/5):175–308.

Article  Google Scholar 

Pang R, Zhan Y, Zhang Y, Guo R, Wang J, Guo X, Liu Y, Wang Z, Li K. Aberrant functional Connectivity Architecture in participants with chronic insomnia disorder accompanying cognitive dysfunction: a Whole-Brain, Data-Driven Analysis. Front Neurosci. 2017;11:259. https://doi.org/10.3389/fnins.2017.00259. PMID: 28553199; PMCID: PMC5425485.

Article  PubMed  PubMed Central  Google Scholar 

Urgesi C, Mattiassi AD, Buiatti T, Marini A. Tell it to a child! A brain stimulation study of the role of left inferior frontal gyrus in emotion regulation during storytelling. NeuroImage. 2016;136:26–36. https://doi.org/10.1016/j.neuroimage.2016.05.039. Epub 2016 May 14. PMID: 27188219.

Article  PubMed  Google Scholar 

Jastorff J, De Winter FL, Van den Stock J, Vandenberghe R, Giese MA, Vandenbulcke M. Functional dissociation between anterior temporal lobe and inferior frontal gyrus in the processing of dynamic body expressions: insights from behavioral variant frontotemporal dementia. Hum Brain Mapp. 2016;37(12):4472–86. Epub 2016 Aug 11. PMID: 27510944; PMCID: PMC6867423.

Article  PubMed  PubMed Central  Google Scholar 

Zhang X, Liu L, Yang F, Liu Z, Jin X, Han S, Zhang Y, Cheng J, Wen B. Neurovascular coupling dysfunction in high myopia patients: Evidence from a multi-modal magnetic resonance imaging analysis. J Neuroradiol. 2023 Sep 29:S0150-9861(23)00242-0. doi: 10.1016/j.neurad.2023.09.005. Epub ahead of print. PMID: 37777086.

Yin X, Chen L, Ma M, Zhang H, Gao M, Wu X, Li Y. Altered brain structure and spontaneous functional activity in children with concomitant Strabismus. Front Hum Neurosci. 2021;15:777762. https://doi.org/10.3389/fnhum.2021.777762. PMID: 34867247; PMCID: PMC8634149.

Article  PubMed  PubMed Central  Google Scholar 

Moss MM, Zatka-Haas P, Harris KD, Carandini M, Lak A. Dopamine axons in dorsal striatum Encode Contralateral Visual Stimuli and choices. J Neurosci. 2021;41(34):7197–205. https://doi.org/10.1523/JNEUROSCI.0490-21.2021. Epub 2021 Jul 12. PMID: 34253628; PMCID: PMC8387116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA, Argyropoulou MI. Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study. AJNR Am J Neuroradiol. 2012;33(1):128–34. https://doi.org/10.3174/ajnr.A2714. Epub 2011 Nov 24. PMID: 22116110; PMCID: PMC7966164.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gliebus GP. Memory Dysfunction. Continuum (Minneap Minn). 2018;24(3, BEHAVIORAL NEUROLOGY AND PSYCHIATRY):727–744. https://doi.org/10.1212/CON.0000000000000619. PMID: 29851875.

Berron D, van Westen D, Ossenkoppele R, Strandberg O, Hansson O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain. 2020;143(4):1233–1248. https://doi.org/10.1093/brain/awaa068. Erratum in: Brain. 2021;144(9):e84. PMID: 32252068; PMCID: PMC7174043.

Wu YJ, Wu N, Huang X, Rao J, Yan L, Shi L, Huang H, Li SY, Zhou FQ, Wu XR. Evidence of cortical thickness reduction and disconnection in high myopia. Sci Rep. 2020;10(1):16239. https://doi.org/10.1038/s41598-020-73415-3. PMID: 33004887; PMCID: PMC7530748.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang X, Hu Y, Zhou F, Xu X, Wu Y, Jay R, Cheng Y, Wang J, Wu X. Altered whole-brain gray matter volume in high myopia patients: a voxel-based morphometry study. NeuroReport. 2018;29(9):760–7. PMID: 29634585; PMCID: PMC5965935.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif