Williams CA, Beaudet AL, Clayton-Smith J, Knoll JH, Kyllerman M, Laan LA, et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet Part A. 2006;140A(5):413–8.
Thibert RL, Larson AM, Hsieh DT, Raby AR, Thiele EA. Neurologic manifestations of Angelman Syndrome. Pediatr Neurol. 2013;48(4):271–9.
Maranga C, Fernandes TG, Bekman E, da Rocha ST. Angelman syndrome: a journey through the brain. FEBS J. 2020;287(11):2154–75.
Article CAS PubMed Google Scholar
Albrecht U, Sutcliffe JS, Cattanach BM, Beechey CV, Armstrong D, Eichele G, et al. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet. 1997;17(1):75–8.
Article CAS PubMed Google Scholar
Kishino T, Lalande M, Wagstaff J. • UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997;15(1):70–3.
Article CAS PubMed Google Scholar
Williams CA, Driscoll DJ, Dagli AI. Clinical and genetic aspects of Angelman syndrome. Genet Med. 2010;12(7):385–95.
Article CAS PubMed Google Scholar
Hershko A, Ciechanover A. THE UBIQUITIN SYSTEM. Annu Rev Biochem. 1998;67(1):425–79.
Article CAS PubMed Google Scholar
Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta - Mol Cell Res. 2004;1695(1–3):55–72.
Judson MC, Sosa-Pagan JO, Del Cid WA, Han JE, Philpot BD. Allelic specificity of Ube3a expression in the mouse brain during postnatal development. J Comp Neurol. 2014;522(8):1874–96.
Article CAS PubMed PubMed Central Google Scholar
Sonzogni M, Zhai P, Mientjes EJ, van Woerden GM, Elgersma Y. Assessing the requirements of prenatal UBE3A expression for rescue of behavioral phenotypes in a mouse model for Angelman syndrome. Mol Autism. 2020;11(1):70.
Article PubMed PubMed Central Google Scholar
Simchi L, Gupta PK, Feuermann Y, Kaphzan H. Elevated ROS levels during the early development of Angelman syndrome alter the apoptotic capacity of the developing neural precursor cells. Mol Psychiatry. 2023;28(6):2382–97.
Article CAS PubMed PubMed Central Google Scholar
Jiang Yhui, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, et al. Mutation of the Angelman Ubiquitin Ligase in mice causes increased cytoplasmic p53 and deficits of Contextual Learning and Long-Term potentiation. Neuron. 1998;21(4):799–811.
Article CAS PubMed Google Scholar
Miura K, Kishino T, Li E, Webber H, Dikkes P, Holmes GL, et al. Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol Dis. 2002;9:149–59.
Article CAS PubMed Google Scholar
Koyavski L, Panov J, Simchi L, Rayi PR, Sharvit L, Feuermann Y, et al. Sex-dependent sensory phenotypes and related transcriptomic expression profiles are differentially affected by Angelman Syndrome. Mol Neurobiol. 2019;56(9):5998–6016.
Article CAS PubMed Google Scholar
Simchi L, Kaphzan H. Aberrant aggressive behavior in a mouse model of Angelman syndrome. Sci Rep. 2021;11(1):47.
Article CAS PubMed PubMed Central Google Scholar
Silva-santos S, Woerden GM, Van, Bruinsma CF, Mientjes E. Ube3a reinstatement identifies distinct treatment windows in Angelman syndrome model mice. J Clin Invest. 2015;125(5):2069–76.
Article PubMed PubMed Central Google Scholar
Elgersma Y, Sonzogni M. UBE3A reinstatement as a disease-modifying therapy for Angelman syndrome. Dev Med Child Neurol. 2021;63(7):802–7.
Article PubMed PubMed Central Google Scholar
Su H, Fan W, Coskun PE, Vesa J, Gold JA, Jiang YH, et al. Mitochondrial dysfunction in CA1 hippocampal neurons of the Ube3a deficient mouse model for Angelman syndrome. Neurosci Lett. 2011;487(2):129–33.
Article CAS PubMed Google Scholar
Santini E, Turner KL, Ramaraj AB, Murphy MP, Klann E, Kaphzan H. Mitochondrial superoxide contributes to hippocampal synaptic dysfunction and memory deficits in Angelman Syndrome Model mice. J Neurosci. 2015;35:16213–20.
Article CAS PubMed PubMed Central Google Scholar
Panov J, Simchi L, Feuermann Y, Kaphzan H. Bioinformatics analyses of the Transcriptome Reveal Ube3a-Dependent effects on mitochondrial-related pathways. Int J MolSci. 2020;21(11):4156.
Simchi L, Panov J, Morsy O, Feuermann Y, Kaphzan H. Novel insights into the role of UBE3A in regulating apoptosis and proliferation. J Clin Med. 2020;9(5):1573.
Article CAS PubMed PubMed Central Google Scholar
Katrina J, Llewellyn A, Gomez D, Wei, Naomi Walker VEK. Administration of CoQ10 analogue ameliorates dysfunction of the mitochondrial respiratory chain in a mouse model of Angelman syndrome. Neurobiol Dis. 2015;76:77–86.
Cheng N, Rho JM, Masino SA. Metabolic dysfunction underlying Autism Spectrum disorder and potential treatment approaches. Front Mol Neurosci. 2017;10.
Khacho M, Slack RS. Mitochondrial activity in the regulation of stem cell self-renewal and differentiation. Curr Opin Cell Biol. 2017;49:1–8.
Article CAS PubMed Google Scholar
Wolyniec K, Levav-Cohen Y, Jiang Y-H. SH& YH. The E6AP E3 ubiquitin ligase regulates the cellular response to oxidative stress. Oncogene. 2012;32:3510–9.
Lauren E, Gyllenhammer JM, Rasmussen N, Bertele A, Halbing S, Entringer PD, Wadhwa CB. Maternal inflammation during pregnancy and offspring Brain Development: the role of Mitochondria. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7(5):498–509.
Ryann M, Fame, Maria K. Lehtinen. Mitochondria in Early Forebrain Development: from Neurulation to Mid-corticogenesis. Front Cell Dev Biol. 2021;9:780207.
Zheng X, Boyer L, Jin M, Mertens J, Kim Y, Ma L et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife. 2016;5.
Kim D-Y, Rhee I. Metabolic circuits in neural stem cells. Cell Mol Life Sci. 2014;71(21):4221–41.
Article CAS PubMed PubMed Central Google Scholar
Agostini M, Romeo F, Inoue S, Niklison-Chirou MV, Elia AJ, Dinsdale D, Morone N, Knight RA, Mak TW, GM. Metabolic reprogramming during neuronal differentiation. Cell Death Differ. 2016;23(9):1502–14.
Article CAS PubMed PubMed Central Google Scholar
Jia D, Wang F, Yu H. Systemic alterations of tricarboxylic acid cycle enzymes in Alzheimer’s disease. Front Neurosci. 2023;17.
Richard E, Frye N, Rinco PJ, McCarty D, Brister AC, Scheck DAR. Biomarkers of mitochondrial dysfunction in autism spectrum disorder: a systematic review and meta-analysis. Neurobiol Dis. 2024;197.
Pruett BS, Meador-Woodruff JH. Evidence for altered energy metabolism, increased lactate, and decreased pH in schizophrenia brain: a focused review and meta-analysis of human postmortem and magnetic resonance spectroscopy studies. Schizophr Res. 2020;223:29–42.
Orozco JS, Hertz-Picciotto I, Abbeduto L, Slupsky CM. Metabolomics analysis of children with autism, idiopathic-developmental delays, and Down syndrome. Transl Psychiatry. 2019;9(1):243.
Article PubMed PubMed Central Google Scholar
Sadhana Kumari PD, S, Senthil Kumaran PD, Vinay Goyal DM, Samrat Bose PD, Suman Jain MD. Sada Nand Dwivedi Ph.D, Achal Kumar Srivastava D.M. NRJP. Metabolomic analysis of serum using proton NMR in 6-OHDA experimental PD model and patients with PD. Neurochem Int. 2020;134.
Huang HS, Burns AJ, Nonneman RJ, Baker LK, Riddick NV, Nikolova VD, et al. Behavioral deficits in an angelman syndrome model: effects of genetic background and age. Behav Brain Res 2013;243:79–90. https://doi.org/10.1016/j.bbr.2012.12.052
Berg EL, Petkova SP, Born HA, Adhikari A, Anderson AE, Silverman JL. Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome. Mol Autism. 2021;12(1):59. https://doi.org/10.1186/s13229-021-00467-1
Petkova SP, Adhikari A, Berg EL, Fenton TA, Duis J, Silverman JL. Gait as a quantitative translational outcome measure in angelman syndrome. Autism Res. 2022;15(5):821–33. https://doi.org/10.1002/aur.2697
Sidorov MS, Deck GM, Dolatshahi M, Thibert RL, Bird LM, Chu CJ, et al. Delta rhythmicity is a reliable EEG biomarker in Angelman syndrome: a parallel mouse and human analysis. J Neurodev Disord. 2017;9(1). https://doi.org/10.1186/s11689-017-9195-8
留言 (0)