Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications and challenges

Papapetrou EP. Induced pluripotent stem cells, past and future. Science. 2016;353(6303):991–2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crespo M, Vilar E, Tsai SY, Chang K, Amin S, Srinivasan T, Zhang T, Pipalia NH, Chen HJ, Witherspoon M, et al. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat Med. 2017;23(7):878–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grskovic M, Javaherian A, Strulovici B, Daley GQ. Induced pluripotent stem cells–opportunities for disease modelling and drug discovery. Nat Rev Drug Discov. 2011;10(12):915–29.

Article  CAS  PubMed  Google Scholar 

Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET, Hurles ME, Kathiresan S, Kenny EE, Lindgren CM, MacArthur DG, et al. A brief history of human disease genetics. Nature. 2020;577(7789):179–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shapiro RM, Kim DDH. Next-generation sequencing-based minimal residual disease monitoring in patients receiving allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia or myelodysplastic syndrome. Curr Opin Hematol. 2018;25(6):425–32.

Article  PubMed  Google Scholar 

Gallagher MD, Chen-Plotkin AS. The post-GWAS era: from association to function. Am J Hum Genet. 2018;102(5):717–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gutbrod MJ, Martienssen RA. Conserved chromosomal functions of RNA interference. Nat Rev Genet. 2020;21(5):311–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boutros M, Ahringer J. The art and design of genetic screens: RNA interference. Nat Rev Genet. 2008;9(7):554–66.

Article  CAS  PubMed  Google Scholar 

Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12(7):1179–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK, Downward J, Ellenberg J, Fraser AG, Hacohen N, et al. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods. 2006;3(10):777–9.

Article  CAS  PubMed  Google Scholar 

Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol. 2012;30(5):460–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–8.

Article  CAS  PubMed  Google Scholar 

Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. 2009;139(5):945–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang B, Chen JZ, Luo XQ, Wan GH, Tang YL, Wang QP. The application of genome-wide CRISPR-Cas9 screens to dissect the molecular mechanisms of toxins. Comput Struct Biotechnol J. 2022;20:5076–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yi P, Morrow N. Applying CRISPR screen in diabetes research. Diabetes. 2021;70(9):1962–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue VW, Wong SCC, Cho WCS. Genome-wide CRISPR screens for the identification of therapeutic targets for cancer treatment. Expert Opin Ther Targets. 2020;24(11):1147–58.

Article  CAS  PubMed  Google Scholar 

Yu JSL, Yusa K. Genome-wide CRISPR-Cas9 screening in mammalian cells. Methods. 2019;164–165:29–35.

Article  PubMed  Google Scholar 

Khaled M, Moustafa AS, El-Khazragy N, Ahmed MI, Abd Elkhalek MA, El Salahy EM. CRISPR/Cas9 mediated knock-out of VPREB1 gene induces a cytotoxic effect in myeloma cells. PLoS ONE. 2021;16(1):e0245349.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Khazragy N, Ghozy S, Emad P, Mourad M, Razza D, Farouk YK, Mohamed NA, Ahmed MK, Youssef T, Bahnasawy YM, et al. Chimeric antigen receptor T cells immunotherapy: challenges and opportunities in hematological malignancies. Immunotherapy. 2020;12(18):1341–57.

Article  CAS  PubMed  Google Scholar 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–7.

Article  CAS  PubMed  Google Scholar 

Jamehdor S, Pajouhanfar S, Saba S, Uzan G, Teimoori A, Naserian S. Principles and applications of CRISPR toolkit in virus manipulation, diagnosis, and virus-host interactions. Cells. 2022;11(6):999.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rotondo JC, Martini F, Maritati M, Caselli E, Gallenga CE, Guarino M, De Giorgio R, Mazziotta C, Tramarin ML, Badiale G, et al. Advanced molecular and immunological diagnostic methods to detect SARS-CoV-2 infection. Microorganisms. 2022;10(6):1193.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDade JR, Waxmonsky NC, Swanson LE, Fan M. Practical considerations for using pooled lentiviral CRISPR libraries. Curr Protoc Mol Biol. 2016. https://doi.org/10.1002/cpmb.8.

Article  PubMed  Google Scholar 

Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32(4):347–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods. 2015;12(12):1143–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schultenkamper K, Brito LF, Wendisch VF. Impact of CRISPR interference on strain development in biotechnology. Biotechnol Appl Biochem. 2020;67(1):7–21.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif