In vitro screening of understudied PFAS with a focus on lipid metabolism disruption

AbdulHameed MDM, Pannala VR, Wallqvist A (2019) Mining public toxicogenomic data reveals insights and challenges in delineating liver steatosis adverse outcome pathways. Front Genet. https://doi.org/10.3389/fgene.2019.01007

Article  PubMed  PubMed Central  Google Scholar 

Abe T, Takahashi M, Kano M, Amaike Y, Ishii C, Maeda K, Kudoh Y, Morishita T, Hosaka T, Sasaki T, Kodama S, Matsuzawa A, Kojima H, Yoshinari K (2017) Activation of nuclear receptor CAR by an environmental pollutant perfluorooctanoic acid. Arch Toxicol. https://doi.org/10.1007/s00204-016-1888-3

Article  PubMed  Google Scholar 

Alaynick WA (2008) Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion. https://doi.org/10.1016/j.mito.2008.02.001

Article  PubMed  PubMed Central  Google Scholar 

al-Eryani L, Wahlang B, Falkner KC, Guardiola JJ, Clair HB, Prough RA, Cave M (2015) Identification of environmental chemicals associated with the development of toxicant-associated fatty liver disease in rodents. Toxicol Pathol. https://doi.org/10.1177/0192623314549960

Article  PubMed  Google Scholar 

Almeida NMS, Itcan Eken Y, Wilson AK (2021) Binding of per-and polyfluoro-alkyl substances to peroxisome proliferator-activated receptor gamma. ACS Omega. https://doi.org/10.1021/acsomega.1c01304

Article  PubMed  PubMed Central  Google Scholar 

ATSDR (2021) Toxicological Profile for Perfluoroalkyls—Release May 2021. Agency for Toxic Substances and Disease Registry

Azzu V, Vacca M, Kamzolas I, Hall Z, Leslie J, Carobbio S, Virtue S, Davies SE, Lukasik A, Dale M, Bohlooly-Y M, Acharjee A, Lindén D, Bidault G, Petsalaki E, Griffin JL, Oakley F, Allison MED, Vidal-Puig A (2021) Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression. Mol Metab. https://doi.org/10.1016/j.molmet.2021.101210

Article  PubMed  PubMed Central  Google Scholar 

Becnel LB, Darlington YF, Ochsner SA, Easton-Marks JR, Watkins CM, McOwiti A, Kankanamge WH, Wise MW, DeHart M, Margolis RN, McKenna NJ, Sladek FM (2015) Nuclear receptor signaling atlas: opening access to the biology of nuclear receptor signaling pathways. PLoS ONE. https://doi.org/10.1371/journal.pone.0135615

Article  PubMed  PubMed Central  Google Scholar 

Beggs KM, McGreal SR, McCarthy A, Gunewardena S, Lampe JN, Lau C, Apte U (2016) The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction. Toxicol Appl Pharmacol. https://doi.org/10.1016/j.taap.2016.05.001

Article  PubMed  PubMed Central  Google Scholar 

Behr AC, Plinsch C, Braeuning A, Buhrke T (2020a) Activation of human nuclear receptors by perfluoroalkylated substances (PFAS). Toxicol in Vitro 62:104700. https://doi.org/10.1016/J.TIV.2019.104700

Article  PubMed  Google Scholar 

Behr A-C, Kwiatkowski A, Ståhlman M, Schmidt FF, Luckert C, Braeuning A, Buhrke T (2020b) Impairment of bile acid metabolism by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in human HepaRG hepatoma cells. Arch Toxicol 94(5):1673–1686. https://doi.org/10.1007/s00204-020-02732-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behr A-C, Kwiatkowski A, Stahlman M, Schmidt FF, Luckert C, Braeuning A, Buhrke T (2021) Correction to: Impairment of bile acid metabolism by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in human HepaRG hepatoma cells (Archives of Toxicology, (2020), 94, 5, (1673–1686), 10.1007/s00204-020-02732-3). Arch Toxicol. https://doi.org/10.1007/s00204-021-03089-x

Article  PubMed  PubMed Central  Google Scholar 

Bell TA, Brown JM, Graham MJ, Lemonidis KM, Crooke RM, Rudel LL (2006) Liver-specific inhibition of acyl-coenzyme A:cholesterol acyltransferase 2 with antisense oligonucleotides limits atherosclerosis development in apolipoprotein B100-only low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol. https://doi.org/10.1161/01.ATV.0000225289.30767.06

Article  PubMed  Google Scholar 

Berthier A, Johanns M, Zummo FP, Lefebvre P, Staels B (2021) PPARs in liver physiology. Biochim Biophys Acta Mol Basis Dis. https://doi.org/10.1016/j.bbadis.2021.166097

Article  PubMed  Google Scholar 

Bjork JA, Butenhoff JL, Wallace KB (2011) Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes. Toxicology 288(1–3):8–17. https://doi.org/10.1016/J.TOX.2011.06.012

Article  CAS  PubMed  Google Scholar 

Boiteux V, Bach C, Sagres V, Hemard J, Colin A, Rosin C, Munoz JF, Dauchy X (2016) Analysis of 29 per- and polyfluorinated compounds in water, sediment, soil and sludge by liquid chromatography–tandem mass spectrometry. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2016.1196683

Article  Google Scholar 

Boiteux V, Dauchy X, Bach C, Colin A, Hemard J, Sagres V, Rosin C, Munoz JF (2017) Concentrations and patterns of perfluoroalkyl and polyfluoroalkyl substances in a river and three drinking water treatment plants near and far from a major production source. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.01.079

Article  PubMed  Google Scholar 

Brewer CT, Chen T (2016) PXR variants: the impact on drug metabolism and therapeutic responses. Acta Pharm Sin B. https://doi.org/10.1016/j.apsb.2016.07.002

Article  PubMed  PubMed Central  Google Scholar 

Calkin AC, Tontonoz P (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm3312

Article  PubMed  PubMed Central  Google Scholar 

Castillo HB, Shuster SO, Tarekegn LH, Davis CM (2023) Oleic acid differentially affects de novo lipogenesis in adipocytes and hepatocytes. BioRxiv. 2023.10.04.560581. https://doi.org/10.1101/2023.10.04.560581

Chang CJ, Ryan PB, Smarr MM, Kannan K, Panuwet P, Dunlop AL, Corwin EJ, Barr DB (2021) Serum per- and polyfluoroalkyl substance (PFAS) concentrations and predictors of exposure among pregnant African American women in the Atlanta area, Georgia. Environ Res. https://doi.org/10.1016/j.envres.2020.110445

Article  PubMed  PubMed Central  Google Scholar 

Chen M, Qiang L, Pan X, Fang S, Han Y, Zhu L (2015) In Vivo and in vitro isomer-specific biotransformation of perfluorooctane sulfonamide in common carp (Cyprinus carpio). Environ Sci Technol 49(23):13817–13824. https://doi.org/10.1021/acs.est.5b00488

Article  CAS  PubMed  Google Scholar 

Chen H, Qiu W, Yang X, Chen F, Chen J, Tang L, Zhong H, Magnuson JT, Zheng C, Xu EG (2022) Perfluorooctane sulfonamide (PFOSA) induces cardiotoxicity via aryl hydrocarbon receptor activation in zebrafish. Environ Sci Technol. https://doi.org/10.1021/acs.est.1c08875

Article  PubMed  PubMed Central  Google Scholar 

Chow SJ, Ojeda N, Jacangelo JG, Schwab KJ (2021) Detection of ultrashort-chain and other per- and polyfluoroalkyl substances (PFAS) in US bottled water. Water Res. https://doi.org/10.1016/j.watres.2021.117292

Article  PubMed  Google Scholar 

Claudel T, Zollner G, Wagner M, Trauner M (2011) Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. Biochim Biophys Acta (BBA) Mol Basis Dis 1812(8):867–878. https://doi.org/10.1016/J.BBADIS.2010.12.021

Article  CAS  Google Scholar 

D’Eon JC, Mabury SA (2011) Is indirect exposure a significant contributor to the burden of perfluorinated acids observed in humans? Environ Sci Technol. https://doi.org/10.1021/es200171y

Article  PubMed  Google Scholar 

Dasgupta S, Reddam A, Liu Z, Liu J, Volz DC (2020) High-content screening in zebrafish identifies perfluorooctanesulfonamide as a potent developmental toxicant. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.113550

Article  PubMed  Google Scholar 

DeWitt JC (2015) Toxicological effects of perfluoroalkyl and polyfluoroalkyl substances (NV-1 o). Humana Press. https://doi.org/10.1007/978-3-319-15518-0. https://vu.on.worldcat.org/oclc/907641019

Dewitt JC, Peden-Adams MM, Keller JM, Germolec DR (2012) Immunotoxicity of perfluorinated compounds: recent developments. Toxicol Pathol. https://doi.org/10.1177/0192623311428473

Article  PubMed  Google Scholar 

Dong GH, Zhang YH, Zheng L, Liu W, Jin YH, He QC (2009) Chronic effects of perfluorooctanesulfonate exposure on immunotoxicity in adult male C57BL/6 mice. Arch Toxicol. https://doi.org/10.1007/s00204-009-0424-0

Article  PubMed  Google Scholar 

EFSA (2018) Minutes of the expert meeting on perfluooroctane sulfonic acid and perfluorooctanoic acid in food assessment. EFSA/CONTAM/3503, vol 178, pp 1–24. https://www.efsa.europa.eu/sites/default/files/news/efsa-contam-3503.pdf

留言 (0)

沒有登入
gif