A new 3D model of L929 fibroblasts microtissues uncovers the effects of Bothrops erythromelas venom and its antivenom

Achilli TM, Meyer J, Morgan JR (2012) Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 12(10):1347–1360. https://doi.org/10.1517/14712598.2012.707181

Article  CAS  PubMed  PubMed Central  Google Scholar 

Albuquerque PLMM, Paiva JHHGL, Martins AMC, Meneses GC, da Silva Júnior GB, Buckley N, Daher EDF (2020) Clinical assessment and pathophysiology of Bothrops venom-related acute kidney injury: a scoping review. J Venom Anim Toxins Incl Trop Dis 26:e20190076. https://doi.org/10.1590/1678-9199-JVATITD-2019-0076

Article  CAS  PubMed  PubMed Central  Google Scholar 

American Type Culture Collection, American Type Culture Collection website, accessed 16 May 2024. https://www.atcc.org/products/ccl-171.

Aramwit P, Kanokpanont S, Nakpheng T, Srichana T (2010) The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci 11(5):2200–2211. https://doi.org/10.3390/ijms11052200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernardes-Oliveira E, Gomes DL et al (2016) Bothrops jararaca and Bothrops erythromelas Snake Venoms Promote Cell Cycle Arrest and Induce Apoptosis via the Mitochondrial Depolarization of Cervical Cancer Cells. Evid Based Complement Alternat Med 2016:1574971. https://doi.org/10.1155/2016/1574971

Article  PubMed  PubMed Central  Google Scholar 

Berneel E, Philips C, Declercq H, Cornelissen R (2016) Redifferentiation of high-throughput generated fibrochondrocyte micro-aggregates: impact of low oxygen tension. Cells Tissues Organs 202(5–6):369–381. https://doi.org/10.1159/000447509

Article  CAS  PubMed  Google Scholar 

Carriel V, Garzón I (2009) Aplicación del método de bloque celular para evaluar la población de fibroblastos de mucosa oral en ingeniería tisular. Actual Med 94:007–011

Google Scholar 

Carvalho JCT, Keita H, Santana GR et al (2018) Effects of Bothrops alternatus venom in zebrafish: a histopathological study. Inflammopharmacology 26(1):273–284. https://doi.org/10.1007/s10787-017-0362-z

Article  CAS  PubMed  Google Scholar 

Cavalcante JDS, Nogueira Júnior FA, Bezerra Jorge RJ, Almeida C (2021) Pain modulated by Bothrops snake venoms: Mechanisms of nociceptive signaling and therapeutic perspectives. Toxicon 201:105–114. https://doi.org/10.1016/j.toxicon.2021.08.016

Article  CAS  PubMed  Google Scholar 

Chato-Astrain J, Chato-Astrain I, Sánchez-Porras D, García-García ÓD, Bermejo-Casares F, Vairo C, Villar-Vidal M, Gainza G, Villullas S, Oruezabal RI, Ponce-Polo Á, Garzón I, Carriel V, Campos F, Alaminos M (2020) Generation of a novel human dermal substitute functionalized with antibiotic-loaded nanostructured lipid carriers (NLCs) with antimicrobial properties for tissue engineering. J Nanobiotechnol 18(1):174. https://doi.org/10.1186/s12951-020-00732-0

Article  CAS  Google Scholar 

Chen, D., Smith, L., Khandekar, G., Patel, P., Yu, C., Zhang, K., Chen, C., Han, L., & Wells, R. (2020). Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Sci Rep, 10. https://doi.org/10.1038/s41598-020-76107-0.

da Silva WRGB, de Siqueira Santos L, Lira D, de Oliveira Luna KP, Fook SML, Alves RRN (2023) Who are the most affected by Bothrops snakebite envenoming in Brazil? A Clinical-epidemiological profile study among the regions of the country. PLoS Negl Trop Dis 17(10):e0011708. https://doi.org/10.1371/journal.pntd.0011708

Article  PubMed  PubMed Central  Google Scholar 

de Ávila RI, Valadares MC (2019) Brazil moves toward the replacement of animal experimentation. Alternatives to Laboratory Animals : ATLA 47(2):71–81. https://doi.org/10.1177/0261192919856806

Article  PubMed  Google Scholar 

de Sousa FC, Jorge AR, de Menezes, et al (2016) Bothrops erythromelas () venom induces apoptosis on renal tubular epithelial cells. Toxicon 118:82–85. https://doi.org/10.1016/j.toxicon.2016.04.040

Article  CAS  PubMed  Google Scholar 

Durand-Herrera D, Campos F, Jaimes-Parra BD, Sánchez-López JD, Fernández-Valadés R, Alaminos M, Campos A, Carriel V (2018) Wharton’s jelly-derived mesenchymal cells as a new source for the generation of microtissues for tissue engineering applications. Histochem Cell Biol 150(4):379–393. https://doi.org/10.1007/s00418-018-1685-6

Article  CAS  PubMed  Google Scholar 

Fusco, L., Velde, A., Leiva, L., & Bustillo, S. (2021). Evaluation of in vitro muscle regeneration after myonecrosis induced by Bothrops alternatus and Bothrops diporus venoms from Northeastern Argentina. Proceedings of 1st International Electronic Conference on Toxins. https://doi.org/10.3390/iect2021-09116.

Gutiérrez, J., Escalante, T., Rucavado, A., & Herrera, C. (2016). Hemorrhage Caused by Snake Venom Metalloproteinases: A Journey of Discovery and Understanding †. Toxins, 8. https://doi.org/10.3390/toxins8040093.

Jensen C, Teng Y (2020) Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci 7:33. https://doi.org/10.3389/fmolb.2020.00033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jorge RJB, Monteiro HS et al (2015) Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil. J Proteomics 114:93–114. https://doi.org/10.1016/j.jprot.2014.11.011

Article  CAS  PubMed  Google Scholar 

Jyothsna KM, Sarkar P, Jha KK, Lal KrishnaRaghunathanBhat ASVR (2021) A biphasic response of polymerized Type 1 collagen architectures to dermatan sulfate. J Biomed Mater Res, Part A 109(9):1646–1656. https://doi.org/10.1002/jbm.a.37160

Article  CAS  Google Scholar 

Larréché S, Chippaux JP, Chevillard L, Mathé S, Résière D, Siguret V, Mégarbane B (2021) Bleeding and thrombosis: Insights into pathophysiology of Bothrops venom-related hemostasis disorders. Int J Mol Sci 22(17):9643. https://doi.org/10.3390/ijms22179643

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazarovici P, Marcinkiewicz C, Lelkes P (2020) Cell-based adhesion assays for isolation of snake venom’s integrin antagonists. Methods Mol Biol 2068:205–223. https://doi.org/10.1007/978-1-4939-9845-6_11

Article  CAS  PubMed  Google Scholar 

Luan Q, Becker J, Macaraniag C, Massad M, Zhou J, Shimamura T, Papautsky I (2022) Non-small cell lung carcinoma spheroid models in agarose microwells for drug response studies. Lab Chip. https://doi.org/10.1039/d2lc00244b

Article  PubMed  PubMed Central  Google Scholar 

Malakpour-Permlid A, Buzzi I, Hegardt C, Johansson F, Oredsson S (2021) Identification of extracellular matrix proteins secreted by human dermal fibroblasts cultured in 3D electrospun scaffolds. Sci Rep 11(1):6655. https://doi.org/10.1038/s41598-021-85742-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marinho AD, da Silva EL, de Sousa Portilho AJ et al (2024) Three snake venoms from Bothrops genus induced apoptosis and cell cycle arrest in K562 human leukemic cell line. Toxicon 238:107547. https://doi.org/10.1016/j.toxicon.2023.107547

Article  CAS  PubMed  Google Scholar 

Maurer J, Walles T, Wiese-Rischke C (2023) Optimization of primary human bronchial epithelial 3D cell culture with donor-matched fibroblasts and comparison of two different culture media. Int J Mol Sci 24(4):4113. https://doi.org/10.3390/ijms24044113

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGahon, A. J., Martin, S. J., Bissonnette, R. P., Mahboubi, A., Shi, Y., Mogil, R. J., ... & Green, D. R. (1995). The end of the (cell) line: methods for the study of apoptosis in vitro. Methods Cell Biol, 46, 153–185. https://doi.org/10.1016/S0091-679X(08)61929-9

Mead TJ, Bhutada S, Martin DR, Apte SS (2022) Proteolysis: a key post-translational modification regulating proteoglycans. Am J Physiol Cell Physiol 323(3):C651–C665. https://doi.org/10.1152/ajpcell.00215.2022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menezes, R., Mello, C., Lima, D., Tessarolo, L., Sampaio, T., Paes, L., Alves, N., Junior, E., Júnior, R., Toyama, M., & Martins, A. (2016). Involvement of Nitric Oxide on Bothropoides insularis Venom Biological Effects on Murine Macrophages In Vitro. PLoS ONE, 11. https://doi.org/10.1371/journal.pone.0151029.

Moreira, V., Leiguez, E., Janovits, P., Maia-Marques, R., Fernandes, C., & Teixeira, C. (2021). Inflammatory Effects of Bothrops Phospholipases A2: Mechanisms Involved in Biosynthesis of Lipid Mediators and Lipid Accumulation. Toxins, 13. https://doi.org/10.3390/toxins13120868.

Nundes RN, Almeida AE, Moura WC, Gonzalez MS, Araújo HP (2024) A cytotoxicity assay as an alternative to the murine model for the potency testing of Bothrops jararaca venom and antivenom: an intralaboratory pre-validation study. Altern Lab Anim 52(2):82–93. https://doi.org/10.1177/02611929241237518

Article  PubMed  Google Scholar 

Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M., & Ohtsuki, M. (2016). Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. International Journal of Molecular Sciences, 17. https://doi.org/10.3390/ijms17060868.

Polonchuk L, Chabria M, Badi L, Hoflack JC, Figtree G, Davies MJ, Gentile C (2017) Cardiac spheroids as promising in vitro models to study the human heart microenvironment. Sci Rep 7(1):7005. https://doi.org/10.1038/s41598-017-06385-8

Art

留言 (0)

沒有登入
gif