Protective and curative effects of unconjugated bilirubin on gene expression of LOX-1 and iNOS in the heart of rats receiving high-fat diet and low dose streptozotocin: a histomorphometric approach

Wang C, Chen J, Wang P, Qing S, Li W, Lu J. Endogenous protective factors and potential therapeutic agents for Diabetes-Associated atherosclerosis. Front Endocrinol (Lausanne). 2022;13:821028. https://doi.org/10.3389/fendo.2022.821028.

Article  PubMed  Google Scholar 

Goldberg RB. Dyslipidemia in diabetes: when and how to treat? Endocrinol Metab Clin North Am. 2022;51(3):603–24. https://doi.org/10.1016/j.ecl.2022.02.011.

Article  PubMed  Google Scholar 

Maruhashi T, Kihara Y, Higashi Y. Bilirubin and endothelial function. J Atheroscler Thromb. 2019;26(8):688–96. https://doi.org/10.5551/jat.RV17035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ai W, Bae S, Ke Q, Su S, Li R, Chen Y et al. Bilirubin Nanoparticles Protect Against Cardiac Ischemia/Reperfusion Injury in Mice. J Am Heart Assoc. 2021;10(20):e021212.10.1161/jaha.121.021212.

McArdle PF, Whitcomb BW, Tanner K, Mitchell BD, Shuldiner AR, Parsa A. Association between bilirubin and cardiovascular disease risk factors: using mendelian randomization to assess causal inference. BMC Cardiovasc Disord. 2012;12:16. https://doi.org/10.1186/1471-2261-12-16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahomoodally MF, Laxmi JT, Bilirubin. Antioxidants Effects in Health: Elsevier; 2022. pp. 71–80.

Nocentini A, Bonardi A, Pratesi S, Gratteri P, Dani C, Supuran CT. Pharmaceutical strategies for preventing toxicity and promoting antioxidant and anti-inflammatory actions of bilirubin. J Enzyme Inhib Med Chem. 2022;37(1):487-501.10.1080/14756366.2021.2020773.

Hayashi S, Takamiya R, Yamaguchi T, Matsumoto K, Tojo SJ, Tamatani T, et al. Induction of heme oxygenase-1 suppresses venular leukocyte adhesion elicited by oxidative stress: role of bilirubin generated by the enzyme. Circ Res. 1999;85(8):663–71. https://doi.org/10.1161/01.res.85.8.663.

Article  CAS  PubMed  Google Scholar 

Yet SF, Layne MD, Liu X, Chen YH, Ith B, Sibinga NE, Perrella MA. Absence of heme oxygenase-1 exacerbates atherosclerotic lesion formation and vascular remodeling. Faseb j. 2003;17(12):1759 – 61.10.1096/fj.03-0187fje.

Troncoso MF, Ortiz-Quintero J, Garrido-Moreno V, Sanhueza-Olivares F, Guerrero-Moncayo A, Chiong M et al. VCAM-1 as a predictor biomarker in cardiovascular disease. Biochim Biophys Acta Mol Basis Dis. 2021;1867(9):166170.10.1016/j.bbadis.2021.166170.

Singh V, Kaur R, Kumari P, Pasricha C, Singh R. ICAM-1 and VCAM-1: gatekeepers in various inflammatory and cardiovascular disorders. Clin Chim Acta. 2023:117487.

Yu J, Liu Y, Peng W, Xu Z. Serum VCAM-1 and ICAM-1 measurement assists for MACE risk estimation in ST-segment elevation myocardial infarction patients. J Clin Lab Anal. 2022;36(10):e24685.10.1002/jcla.24685.

Bourdillon MC, Poston RN, Covacho C, Chignier E, Bricca G, McGregor JL. ICAM-1 deficiency reduces atherosclerotic lesions in double-knockout mice (ApoE(-/-)/ICAM-1(-/-)) fed a fat or a chow diet. Arterioscler Thromb Vasc Biol. 2000;20(12):2630 – 5.10.1161/01.atv.20.12.2630.

Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013;2013:152786.10.1155/2013/152786.

Hong FF, Liang XY, Liu W, Lv S, He SJ, Kuang HB, Yang SL. Roles of eNOS in atherosclerosis treatment. Inflamm Res. 2019;68(6):429 – 41.10.1007/s00011-019-01229-9.

Sharawy N, Lehmann C. Molecular mechanisms by which iNOS uncoupling can induce cardiovascular dysfunction during sepsis: role of posttranslational modifications (PTMs). Life Sci. 2020;255:117821. https://doi.org/10.1016/j.lfs.2020.117821.

Article  CAS  PubMed  Google Scholar 

Zucker SD, Vogel ME, Kindel TL, Smith DL, Idelman G, Avissar U, et al. Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase. Am J Physiol Gastrointest Liver Physiol. 2015;309(10):G841–54. https://doi.org/10.1152/ajpgi.00149.2014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma T, Romeo F, Mehta JL. LOX-1: Implications in atherosclerosis and myocardial ischemia. Excli j. 2022;21:273 – 8.10.17179/excli2021-4532.

Akhmedov A, Sawamura T, Chen CH, Kraler S, Vdovenko D, Lüscher TF. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1): a crucial driver of atherosclerotic cardiovascular disease. Eur Heart J. 2021;42(18):1797 – 807.10.1093/eurheartj/ehaa770.

Mentrup T, Cabrera-Cabrera F, Schröder B. Proteolytic regulation of the Lectin-Like oxidized lipoprotein receptor LOX-1. Front Cardiovasc Med. 2020;7:594441. https://doi.org/10.3389/fcvm.2020.594441.

Article  CAS  PubMed  Google Scholar 

Fisker Hag AM, Pedersen SF, Kjaer A. Gene expression of LOX-1, VCAM-1, and ICAM-1 in pre-atherosclerotic mice. Biochem Biophys Res Commun. 2008;377(2):689 – 93.10.1016/j.bbrc.2008.10.037.

Zou Y, Li J, Lu C, Wang J, Ge J, Huang Y, et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci. 2006;79(11):1100–7. https://doi.org/10.1016/j.lfs.2006.03.021.

Article  CAS  PubMed  Google Scholar 

Gheibi S, Kashfi K, Ghasemi A. A practical guide for induction of type-2 diabetes in rat: incorporating a high-fat diet and streptozotocin. Biomed Pharmacother. 2017;95:605–13. https://doi.org/10.1016/j.biopha.2017.08.098.

Article  CAS  PubMed  Google Scholar 

Binh DV, Dung NTK, Thao L, Nhi N, Chi P. Macro-and microvascular complications of diabetes induced by high-fat diet and low-dose streptozotocin injection in rats model. Int J Diabetes Res. 2013;2(3):50–5.

Google Scholar 

Orio L, Alen F, Pavón FJ, Serrano A, García-Bueno B. Oleoylethanolamide, neuroinflammation, and alcohol abuse. Front Mol Neurosci. 2019:490.

Tutunchi H, Saghafi-Asl M, Ostadrahimi A. A systematic review of the effects of oleoylethanolamide, a high‐affinity endogenous ligand of PPAR‐α, on the management and prevention of obesity. Clin Exp Pharmacol Physiol. 2020;47(4):543–52.

Article  CAS  PubMed  Google Scholar 

Adin CA. Bilirubin as a Therapeutic Molecule: Challenges and Opportunities. Antioxidants (Basel). 2021;10(10).10.3390/antiox10101536.

Lin JP, O’Donnell CJ, Schwaiger JP, Cupples LA, Lingenhel A, Hunt SC et al. Association between the UGT1A1*28 allele, bilirubin levels, and coronary heart disease in the Framingham Heart Study. Circulation. 2006;114(14):1476 – 81.10.1161/circulationaha.106.633206.

Mühlfeld C, Schipke J. Methodological Progress of Stereology in Cardiac Research and Its Application to Normal and Pathological Heart Development. Cells. 2022;11(13).10.3390/cells11132032.

Noorafshan A. Stereology as a valuable tool in the toolbox of testicular research. Ann Anat. 2014;196(1):57-66.10.1016/j.aanat.2012.07.008.

Mandarim-de-Lacerda CA. Stereological tools in biomedical research. An Acad Bras Cienc. 2003;75(4):469 – 86.10.1590/s0001-37652003000400006.

Marcos R, Monteiro RA, Rocha E. The use of design-based stereology to evaluate volumes and numbers in the liver: a review with practical guidelines. J Anat. 2012;220(4):303 – 17.10.1111/j.1469-7580.2012.01475.x.

Schmitz N, Laverty S, Kraus VB, Aigner T. Basic methods in histopathology of joint tissues. Osteoarthritis Cartilage. 2010;18 Suppl 3:S113-6.10.1016/j.joca.2010.05.026.

Schipke J, Brandenberger C, Rajces A, Manninger M, Alogna A, Post H, Mühlfeld C. Assessment of cardiac fibrosis: a morphometric method comparison for collagen quantification. J Appl Physiol (1985). 2017;122(4):1019 – 30.10.1152/japplphysiol.00987.2016.

Weibel ER, Kistler GS, Scherle WF. Practical stereological methods for morphometric cytology. J Cell Biol. 1966;30(1):23-38.10.1083/jcb.30.1.23.

Adin CA. Bilirubin as a therapeutic molecule: challenges and opportunities. Antioxidants. 2021;10(10):1536.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Creeden JF, Gordon DM, Stec DE, Hinds TD Jr. Bilirubin as a metabolic hormone: the physiological relevance of low levels. Am J Physiology-Endocrinology Metabolism. 2021;320(2):E191–207.

Article  CAS  Google Scholar 

Maleki MH, Nadimi E, Vakili O, Tavakoli R, Taghizadeh M, Dehghanian A, et al. Bilirubin improves renal function by reversing the endoplasmic reticulum stress and inflammation in the kidneys of type 2 diabetic rats fed high-fat diet. Chemico-Biol Interact. 2023;378:110490.

Article  CAS  Google Scholar 

Vakili O, Borji M, Saffari-Chaleshtori J, Shafiee SM. Ameliorative effects of bilirubin on cell culture model of non-alcoholic fatty liver disease. Mol Biol Rep. 2023:1–12.

Saffari-Chaleshtori J, Shojaeian A, Heidarian E, Shafiee SM. Inhibitory effects of Bilirubin on Colonization and Migration of A431 and SK-MEL-3 skin Cancer cells compared with human dermal fibroblasts (HDF). Cancer Invest. 2021;39(9):721–33.

Article  CAS  PubMed  Google Scholar 

Niknam M, Maleki MH, Khakshournia S, Rasouli M, Vakili O, Shafiee SM. Bilirubin, an endogenous antioxidant that affects p53 protein and its downstream apoptosis/autophagy-related genes in LS180 and SW480 cell culture models of colorectal cancer. Biochem Biophys Res Commun. 2023;672:161–7.

Article  CAS  PubMed  Google Scholar 

Kundur AR, Singh I, Bulmer AC. Bilirubin, platelet activation and heart disease: a missing link to cardiovascular protection in Gilbert’s syndrome? Atherosclerosis. 2015;239(1):73-84.10.1016/j.atherosclerosis.2014.12.042.

Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal. 2011;15(6):1607 – 38.10.1089/ars.2010.3522.

An Y, Xu B-t, Wan S-r, Ma X-m, Long Y, Xu Y. Jiang Z-z. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc Diabetol. 2023;22(1):237.

Article  PubMed  PubMed Central  Google Scholar 

Vogel ME, Idelman G, Konaniah ES, Zucker SD. Bilirubin Prevents Atherosclerotic Lesion Formation in Low-Density Lipoprotein Receptor-Deficient Mice by Inhibiting Endothelial VCAM-1 and ICAM-1 Signaling. J Am Heart Assoc. 2017;6(4).10.1161/jaha.116.004820.

Gliozzi M, Scicchitano M, Bosco F, Musolino V, Carresi C, Scarano F et al. Modulation of Nitric Oxide Synthases by Oxidized LDLs: Role in Vascular Inflammation and Atherosclerosis Development. Int J Mol Sci. 2019;20(13).10.3390/ijms20133294.

Kattoor AJ, Goel A, Mehta JL. LOX-1: Regulation, Signaling and Its Role in Atherosclerosis. Antioxidants (Basel). 2019;8(7).10.3390/antiox8070218.

Kenney WL, Cannon JG, Alexander LM. Cutaneous microvascular dysfunction correlates with serum LDL and sLOX-1 receptor concentrations. Microvasc Res. 2013;85:112 – 7.10.1016/j.mvr.2012.10.010.

Kawamura K, Ishikawa K, Wada Y, Kimura S, Matsumoto H, Kohro T et al. Bilirubin from heme oxygenase-1 attenuates vascular endothelial activation and dysfunction. Arterioscler Thromb Vasc Biol. 2005;25(1):155 – 60.10.1161/01.ATV.0000148405.18071.6a.

Mollace V, Gliozzi M, Musolino V, Carresi C, Muscoli S, Mollace R et al. Oxidized LDL attenuates protective autophagy and induces apoptotic cell death of endothelial cells: Role of oxidative stress and LOX-1 receptor expression. Int J Cardiol. 2015;184:152 – 8.10.1016/j.ijcard.2015.02.007.

Tian K, Ogura S, Little PJ, Xu SW, Sawamura T. Targeting LOX-1 in atherosclerosis and vasculopathy: current knowledge and future perspectives. Ann N Y Acad Sci. 2019;1443(1):34-53.10.1111/nyas.13984.

Muscoli C, Sacco I, Alecce W, Palma E, Nisticò R, Costa N et al. The protective effect of superoxide dismutase mimetic M40401 on balloon injury-related neointima formation: role of the lectin-like oxidized low-density lipoprotein receptor-1. J Pharmacol Exp Ther. 2004;311(1):44-50.10.1124/jpet.104.068205.

Zhao W, Ma G, Chen X. Lipopolysaccharide induced LOX-1 expression via TLR4/MyD88/ROS activated p38MAPK-NF-κB pathway. Vascul Pharmacol. 2014;63(3):162 – 72.10.1016/j.vph.2014.06.008.

Mukhopadhyay P, Rajesh M, Bátkai S, Kashiwaya Y, Haskó G, Liaudet L et al. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol. 2009;296(5):H1466-83.10.1152/ajpheart.00795.2008.

Raghunandan S, Ramachandran S, Ke E, Miao Y, Lal R, Chen ZB, Subramaniam S. Heme Oxygenase-1 at the Nexus of Endothelial Cell Fate Decision Under Oxidative Stress. Front Cell Dev Biol. 2021;9:702974.10.3389/fcell.2021.702974.

Akinwumi BC, Bordun KM, Anderson HD. Biological Activities of Stilbenoids. Int J Mol Sci. 2018;19(3).10.3390/ijms19030792.

Moreira ASB, Teixeira MT, da Silveira Osso F, Pereira RO, de Oliveira Silva-Junior G, de Souza EG, et al. Left ventricular hypertrophy induced by overnutrition early in life. Nutr Metabolism Cardiovasc Dis. 2009;19(11):805–10.

Article  CAS  Google Scholar 

Inoue T, Sonoda N, Hiramatsu S, Kimura S, Ogawa Y, Inoguchi T. Serum bilirubin concentration is associated with left ventricular remodeling in patients with type 2 diabetes mellitus: a cohort study. Diabetes Therapy. 2018;9:331–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aspromonte N, Fumarulo I, Petrucci L, Biferali B, Liguori A, Gasbarrini A, et al. The liver in Heart failure: from biomarkers to clinical risk. Int J Mol Sci. 2023;24(21):15665.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansen TW, Wong RJ, Stevenson DK. Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn. Physiol Rev. 2020;100(3):1291–346.

Article  CAS  PubMed  Google Scholar 

Bulmer AC, Bakrania B, Du Toit EF, Boon A-C, Clark PJ, Powell LW, et al. Bilirubin acts as a multipotent guardian of cardiovascular integrity: more t

留言 (0)

沒有登入
gif