Therapeutic Monoclonal Antibodies for Metabolic Disorders: Major Advancements and Future Perspectives

Clemente-Suárez VJ, Mielgo-Ayuso J, Martín-Rodríguez A, Ramos-Campo DJ, Redondo-Flórez L, Tornero-Aguilera JF. The burden of carbohydrates in health and disease. Nutrients. 2022;14(18):3809.

Article  PubMed  PubMed Central  Google Scholar 

Clarke JTR. A clinical guide to inherited metabolic diseases. Cambridge University Press; 2005.

Book  Google Scholar 

Saudubray JM, Sedel F, Walter JH. Clinical approach to treatable inborn metabolic diseases: an introduction. Journal of inherited metabolic disease 2006;29(2–3):261–274.

Agana M, Frueh J, Kamboj M, Patel DR, Kanungo S. Common metabolic disorder (inborn errors of metabolism) concerns in primary care practice. Ann Transl Med. 2018;6(24):469.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Standl E, Khunti K, Hansen TB, Schnell O. The global epidemics of diabetes in the 21st century: Current situation and perspectives. Eur J Prev Cardiol. 2019;26(2_suppl):7–14.

Article  PubMed  Google Scholar 

Akkol EK, Aschner M. Chapter 1 - An overview on metabolic disorders and current therapy. In: Khan H, Akkol EK, Daglia M, editors. The role of phytonutrients in metabolic disorders. Academic Press; 2022. pp. 3–33.

Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol. 2021;17(3):150–61.

Article  CAS  PubMed  Google Scholar 

Sprangers B, Van der Schueren B, Gillard P, Mathieu C. Otelixizumab in the treatment of type 1 diabetes mellitus. Immunotherapy. 2011;3(11):1303–16.

Article  CAS  PubMed  Google Scholar 

Goyal R, Singhal M, Jialal I: Type 2 Diabetes. In: StatPearls. Treasure island (FL) ineligible companies. Disclosure: Mayank Singhal declares no relevant financial relationships with ineligible companies. Disclosure: Ishwarlal Jialal declares no relevant financial relationships  with ineligible companies. StatPearls Publishing Copyright ©, StatPearls Publishing LLC. 2024.

Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol Rev. 2019;14(1):50.

Article  Google Scholar 

Benito-Vicente A, Uribe KB, Jebari S, Galicia-Garcia U, Ostolaza H, Martin C. Familial hypercholesterolemia: the most frequent cholesterol metabolism disorder caused disease. Int J Mol Sci. 2018;19(11):3426.

Article  PubMed  PubMed Central  Google Scholar 

Vallejo-Vaz AJ, Akram A, Seshasai SRK, et al. Pooling and expanding registries of familial hypercholesterolaemia to assess gaps in care and improve disease management and outcomes: rationale and design of the global EAS familial hypercholesterolaemia studies collaboration. Atheroscler Suppl. 2016;22:1–32.

Article  PubMed  Google Scholar 

Rani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016;148:183–93.

Article  CAS  PubMed  Google Scholar 

Xie L, Li X. Editorial: roles and mechanisms of adipokines in metabolic diseases. Front Endocrinol. 2023;14:1303966.

Fahed G, Aoun L, Bou Zerdan M, et al. Metabolic syndrome: updates on pathophysiology and management in 2021. Int J Mol Sci. 2022;23(2):786.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haas JT, Biddinger SB. Dissecting the role of insulin resistance in the metabolic syndrome. Curr Opin Lipidol. 2009;20(3):206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garg A, Fazio S, Duell PB, et al. Molecular characterization of familial hypercholesterolemia in a North American cohort. J Endocr Soc. 2020;4(1):bvz015.

Article  PubMed  Google Scholar 

Seidah NG, Abifadel M, Prost S, Boileau C, Prat A. The proprotein convertases in hypercholesterolemia and cardiovascular diseases: emphasis on proprotein convertase subtilisin/kexin 9. Pharmacol Rev. 2017;69(1):33–52.

Article  CAS  PubMed  Google Scholar 

Benjannet S, Rhainds D, Essalmani R, et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem. 2004;279(47):48865–75.

Article  CAS  PubMed  Google Scholar 

Ahamad S, Bhat SA. Recent update on the development of PCSK9 inhibitors for hypercholesterolemia treatment. J Med Chem. 2022;65(23):15513–39.

Article  CAS  PubMed  Google Scholar 

Hampton EN, Knuth MW, Li J, Harris JL, Lesley SA, Spraggon G. The self-inhibited structure of full-length PCSK9 at 1.9 Å reveals structural homology with resistin within the C-terminal domain. Proc Natl Acad Sci. 2007;104(37):14604–9.

Norata GD, Tibolla G, Catapano AL. PCSK9 inhibition for the treatment of hypercholesterolemia: promises and emerging challenges. Vascul Pharmacol. 2014;62(2):103–11.

Article  CAS  PubMed  Google Scholar 

Melendez QM, Krishnaji ST, Wooten CJ, Lopez D. Hypercholesterolemia: the role of PCSK9. Arch Biochem Biophys. 2017;625:39–53.

Article  PubMed  Google Scholar 

Qian Y-W, Schmidt RJ, Zhang Y, et al. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res. 2007;48(7):1488–98.

Article  CAS  PubMed  Google Scholar 

Steinberg D, Witztum JL. Inhibition of PCSK9: a powerful weapon for achieving ideal LDL cholesterol levels. Proc Natl Acad Sci. 2009;106(24):9546-9547.

Schlüter K-D, Wolf A, Schreckenberg R. Coming back to physiology: extra hepatic functions of proprotein convertase subtilisin/kexin type 9. Front Physiol. 2020;11:598649.

Article  PubMed  PubMed Central  Google Scholar 

Stein EA, Honarpour N, Wasserman SM, Xu F, Scott R, Raal FJ. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation. 2013;128(19):2113–20.

Article  CAS  PubMed  Google Scholar 

Ference BA, Robinson JG, Brook RD, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375(22):2144–53.

Article  CAS  PubMed  Google Scholar 

Kersten S. ANGPTL3 as therapeutic target. Curr Opin Lipidol. 2021;32(6):335.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Surma S, Romańczyk M, Filipiak KJ. Angiopoietin-like proteins inhibitors: new horizons in the treatment of atherogenic dyslipidemia and familial hypercholesterolemia. Cardiol J. 2023;30(1):131–42.

Article  PubMed  PubMed Central  Google Scholar 

Krzemińska J, Młynarska E, Radzioch E, Wronka M, Rysz J, Franczyk B. Management of familial hypercholesterolemia with special emphasis on evinacumab. Biomedicines. 2022;10(12):3273.

Article  PubMed  PubMed Central  Google Scholar 

Akoumianakis I, Zvintzou E, Kypreos K, Filippatos TD. ANGPTL3 and apolipoprotein C-III as novel lipid-lowering targets. Curr Atheroscler Rep. 2021;23:1–11.

Article  Google Scholar 

Kersten S. Angiopoietin-like 3 in lipoprotein metabolism. Nat Rev Endocrinol. 2017;13(12):731–9.

Article  CAS  PubMed  Google Scholar 

Raschi E, Casula M, Cicero AFG, Corsini A, Borghi C, Catapano A. Beyond statins: new pharmacological targets to decrease LDL-cholesterol and cardiovascular events. Pharmacol Ther. 2023;250:108507.

Article  CAS  PubMed  Google Scholar 

Stitziel NO, Khera AV, Wang X, et al. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69(16):2054–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kosmas CE, Bousvarou MD, Sourlas A, et al. Angiopoietin-like protein 3 (ANGPTL3) inhibitors in the management of refractory hypercholesterolemia. Clin Pharmacol : Adv Appl. 2022;14:49–59.

Packard CJ, Boren J, Taskinen M-R. Causes and consequences of hypertriglyceridemia. Front Endocrinol. 2020;11:252.

Article  Google Scholar 

Lang W, Frishman WH. Angiopoietin-like 3 protein inhibition: a new frontier in lipid-lowering treatment. Cardiol Rev. 2019;27(4):211–7.

Article  PubMed 

留言 (0)

沒有登入
gif