Therapeutic Implications and Regulations of Protein Post-translational Modifications in Parkinsons Disease

Alexopoulou Z, Lang J, Perrett RM, Elschami M, Hurry ME, Kim HT, Tofaris GK (2016) Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease. Proc Natl Acad Sci 113:E4688–E4697. https://doi.org/10.1073/pnas.1523597113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altay MF, Liu AK, Holton JL, Parkkinen L, Lashuel HA (2022) Prominent astrocytic alpha-synuclein pathology with unique post-translational modification signatures unveiled across Lewy body disorders. Acta Neuropathol Commun 10:163. https://doi.org/10.1186/s40478-022-01468-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altay MF, Kumar ST, Burtscher J, Jagannath S, Strand C, Miki Y, Parkkinen L, Holton JL, Lashuel HA (2023) Development and validation of an expanded antibody toolset that captures alpha-synuclein pathological diversity in Lewy body diseases. NPJ Parkinsons Dis 9:161. https://doi.org/10.1038/s41531-023-00604-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T, Milstien S (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465:1084–1088. https://doi.org/10.1038/nature09128

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A, Jenuwein T, Xu G, Leonhardt H, Wolf V, Walter J (2012) In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet 28(8):e1002750. https://doi.org/10.1371/journal.pgen.1002750

Article  CAS  Google Scholar 

Barcia C, Bahillo AS, Fernández-Villalba E, Bautista V, Poza Y Poza M, Fernández-Barreiro A, Hirsch EC, Herrero MT (2004) Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia 46:402–9. https://doi.org/10.1002/glia.20015

Article  PubMed  Google Scholar 

Bernal-Conde LD, Ramos-Acevedo R, Reyes-Hernández MA, Balbuena-Olvera AJ, Morales-Moreno ID, Argüero-Sánchez R, Schüle B, Guerra-Crespo M (2020) Alpha-synuclein physiology and pathology: a perspective on cellular structures and organelles. Front Neurol 13:502007. https://doi.org/10.3389/fnins.2019.01399

Article  Google Scholar 

Betarbet R, Sherer TB, Greenamyre JT (2005) Ubiquitin–proteasome system and Parkinsons diseases. Exp Neurol 1(191):S17-27. https://doi.org/10.1016/j.expneurol.2004.08.021

Article  CAS  Google Scholar 

Beyer K (2006) α-Synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathol 112:237–251. https://doi.org/10.1007/s00401-006-0104-6

Article  CAS  PubMed  Google Scholar 

Bonifati V (2014) Genetics of Parkinsons disease–state of the art, 2013. Parkinsonism RelatDisord 1(20):S23–S28. https://doi.org/10.1016/S1353-8020(13)70009-9

Article  Google Scholar 

Boutell C, Sadis S, Everett RD (2002) Herpes simplex virus type 1 immediate-early protein ICP0 and its isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol 76:841–50. https://doi.org/10.1128/JVI.76.2.841-850.2002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braithwaite SP, Stock JB, Mouradian MM (2012) α-Synuclein phosphorylation as a therapeutic target in Parkinsons disease. Rev Neurosci 23:191–8. https://doi.org/10.1515/revneuro-2011-0067

Article  CAS  PubMed  Google Scholar 

Brustovetsky N, Brustovetsky T, Jemmerson R, Dubinsky JM (2002) Calcium-induced Cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J Neurochem 80:207–218. https://doi.org/10.1046/j.0022-3042.2001.00671.x

Article  CAS  PubMed  Google Scholar 

Bryan SE, Simons SJ, Vizard DL, Hardy KJ (1976) Interactions of mercury and copper with constitutive heterochromatin and euchromatin in vivo and in vitro. Biochemistry 1(15):1667–1676. https://doi.org/10.1021/bi00653a013

Article  Google Scholar 

Cao B, Wang T, Qu Q, Kang T, Yang Q (2018) Long non-coding RNA SNHG1 promotes neuroinflammation in Parkinsons disease via regulating miR-7/NLRP3 pathway. Neuroscience 15(388):118–127. https://doi.org/10.1016/j.neuroscience.2018.07.019

Article  CAS  Google Scholar 

Caulfield TR, Fiesel FC, Moussaud-Lamodière EL, Dourado DF, Flores SC, Springer W (2014) Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin. PLoSComputBiol 6(10):e1003935. https://doi.org/10.1371/journal.pcbi.1003935

Article  CAS  Google Scholar 

Chakraborty J, Basso V, Ziviani E (2017) Post translational modification of Parkin. Biol Direct 12:1–1. https://doi.org/10.1186/s13062-017-0176-3

Article  CAS  Google Scholar 

Cheng Y, Xie N, Jin P, Wang T (2015) DNA methylation and hydroxymethylation in stem cells. Cell Biochem Funct 33:161–173. https://doi.org/10.1002/cbf.3101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 19(330):1091–1095. https://doi.org/10.1126/science.1197410

Article  CAS  Google Scholar 

Chorfa A, Bétemps D, Morignat E, Lazizzera C, Hogeveen K, Andrieu T, Baron T (2013) Specific pesticide-dependent increases in α-synuclein levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines. Toxicol Sci 1(133):289–297. https://doi.org/10.1093/toxsci/kft076

Article  CAS  Google Scholar 

Cleeter MW, Chau KY, Gluck C, Mehta A, Hughes DA, Duchen M, Wood NW, Hardy J, Cooper JM, Schapira AH (2013) Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage. Neurochem Int 1(62):1–7. https://doi.org/10.1016/j.neuint.2012.10.010

Article  CAS  Google Scholar 

Coppedè F (2012) Genetics and epigenetics of Parkinsons disease. Sci World J. https://doi.org/10.1100/2012/489830

Article  Google Scholar 

Coppedè F (2013) One-carbon metabolism and Alzheimers disease: the DNA methylation hypothesis. Pro Intracell Regul 4(2):28. https://doi.org/10.1016/j.jbior.2016.05.001

Article  CAS  Google Scholar 

Coppedè F (2014) The potential of epigenetic therapies in neurodegenerative diseases. Front Genet 14(5):220. https://doi.org/10.3389/fgene.2014.00220

Article  CAS  Google Scholar 

Davies SE, Hallett PJ, Moens T, Smith G, Mangano E, Kim HT, Goldberg AL, Liu JL, Isacson O, Tofaris GK (2014) Enhanced ubiquitin-dependent degradation by Nedd4 protects against α-synuclein accumulation and toxicity in animal models of Parkinsons disease. Neurobiol Dis 1(64):79–87. https://doi.org/10.1016/j.nbd.2013.12.011

Article  CAS  Google Scholar 

Dawson TM, Dawson VL (2010) The role of parkin in familial and sporadic Parkinsons disease. Mov Disord 25:S32–S39. https://doi.org/10.1002/mds.22798

Article  PubMed  PubMed Central  Google Scholar 

de Mena L, Cardo LF, Coto E, Miar A, Díaz M, Corao AI, Alonso B, Ribacoba R, Salvador C, Menéndez M, Morís G (2010) FGF20 rs12720208 SNP and microRNA-433 variation: no association with Parkinsons disease in Spanish patients. Neurosci Lett 19(479):22–25. https://doi.org/10.1016/j.neulet.2010.05.019

Article  CAS  Google Scholar 

Dorval V, Fraser PE (2006) Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and α-synuclein. J Biol Chem 14(281):9919–9924. https://doi.org/10.1074/jbc.M510127200

Article  CAS  Google Scholar 

Doyle KM, Kennedy D, Gorman AM, Gupta S, Healy SJ, Samali A (2011) Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med 15:2025–2039. https://doi.org/10.1111/j.1582-4934.2011.01374.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif