Pharmacological Modulation of the Cytosolic Oscillator Affects Glioblastoma Cell Biology

Acikgoz E, Güler G, Camlar M et al (2019) Glycogen synthase kinase-3 inhibition in glioblastoma multiforme cells induces apoptosis, cell cycle arrest and changing biomolecular structure. Spectrochim Acta Part A Mol Biomol Spectrosc 209:150–164. https://doi.org/10.1016/J.SAA.2018.10.036

Article  CAS  Google Scholar 

Badura L, Swanson T, Adamowicz W et al (2007) An inhibitor of casein kinase Iϵ induces phase delays in circadian rhythms under free-running and entrained conditions. J Pharmacol Exp Ther 322:730–738. https://doi.org/10.1124/JPET.107.122846

Article  CAS  PubMed  Google Scholar 

Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354. https://doi.org/10.1126/science.1195027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beller M, Thiel K, Thul PJ, Jäckle H (2010) Lipid droplets: a dynamic organelle moves into focus. FEBS Lett 584:2176–2182. https://doi.org/10.1016/j.febslet.2010.03.022

Article  CAS  PubMed  Google Scholar 

Besing RC, Paul JR, Hablitz LM et al (2015) Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus. J Biol Rhythms 30:155. https://doi.org/10.1177/0748730415573167

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brasaemle DL, Wolins NE (2012) Packaging of fat: an evolving model of lipid droplet assembly and expansion. J Biol Chem 287:2273–2279. https://doi.org/10.1074/jbc.R111.309088

Article  CAS  PubMed  Google Scholar 

Bruning-Richardson DA, Droop DA, Tams DD et al (2018) Identification of transcriptional targets of GSK3 involved in glioblastoma invasion. Neuro Oncol 20:i26. https://doi.org/10.1093/NEUONC/NOX238.117

Article  PubMed Central  Google Scholar 

Brüning-richardson A, Shaw GC, Tams D et al (2021) GSK-3 inhibition is cytotoxic in glioma stem cells through centrosome destabilization and enhances the effect of radiotherapy in orthotopic models. Cancers. https://doi.org/10.3390/CANCERS13235939

Article  PubMed  PubMed Central  Google Scholar 

Causton HC, Feeney KA, Ziegler CA, O’Neill JS (2015) Metabolic cycles in yeast share features conserved among circadian rhythms. Curr Biol 25:1056–1062. https://doi.org/10.1016/j.cub.2015.02.035

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen ML, Chen M, Lu D et al (2021) Period 2 regulates CYP2B10 expression and activity in mouse liver. Front Pharmacol. https://doi.org/10.3389/FPHAR.2021.764124/FULL

Article  PubMed  PubMed Central  Google Scholar 

Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290. https://doi.org/10.1016/S0092-8674(00)80566-8

Article  CAS  PubMed  Google Scholar 

Dunlap JC, Loros JJ, DeCoursey PJ (eds) (2004) Chronobiology: biological timekeeping. Sinauer Associates: Sunderland, MA, USA, ISBN 087893149X

Farese RV, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139:855–860. https://doi.org/10.1016/j.cell.2009.11.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furuta T, Sabit H, Dong Y et al (2017) Oncotarget 22811 www.impactjournals.com/oncotarget biological basis and clinical study of glycogen synthase kinase-3β-targeted therapy by drug repositioning for glioblastoma. Oncotarget 8:22811–22824

Article  PubMed  PubMed Central  Google Scholar 

Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90:1063–1102. https://doi.org/10.1152/physrev.00009.2009

Article  CAS  PubMed  Google Scholar 

Gonzalez-Aponte MF, Damato AR, Trebucq LL et al (2023) Circadian regulation of MGMT expression and promoter methylation underlies daily rhythms in TMZ sensitivity in glioblastoma. bioRxiv. https://doi.org/10.1101/2023.09.13.557630

Article  PubMed  PubMed Central  Google Scholar 

Grada A, Otero-Vinas M, Prieto-Castrillo F et al (2017) Research techniques made simple: analysis of collective cell migration using the wound healing assay. J Invest Dermatol 137:e11–e16. https://doi.org/10.1016/J.JID.2016.11.020

Article  CAS  PubMed  Google Scholar 

Guido ME, Garbarino-Pico E, Contin MA et al (2010) Inner retinal circadian clocks and non-visual photoreceptors: novel players in the circadian system. Prog Neurobiol 92:484–504. https://doi.org/10.1016/J.PNEUROBIO.2010.08.005

Article  PubMed  Google Scholar 

Guido ME, Monjes NM, Wagner PM, Salvador GA (2022) Circadian regulation and clock-controlled mechanisms of glycerophospholipid metabolism from neuronal cells and tissues to fibroblasts. Mol Neurobiol 59:326–353. https://doi.org/10.1007/S12035-021-02595-4

Article  CAS  PubMed  Google Scholar 

Hirota T, Lewis WG, Liu AC et al (2008) A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3β. Proc Natl Acad Sci USA 105:20746. https://doi.org/10.1073/PNAS.0811410106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirota T, Lee JW, St. John PC et al (2012) Identification of small molecule activators of cryptochrome. Science 337:1094. https://doi.org/10.1126/SCIENCE.1223710

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huo Y, Zheng Z, Chen Y et al (2016) Downregulation of vimentin expression increased drug resistance in ovarian cancer cells. Oncotarget 7:45876–45888. https://doi.org/10.18632/ONCOTARGET.9970

Article  PubMed  PubMed Central  Google Scholar 

Izumo M, Pejchal M, Schook AC et al (2014) Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. Elife. https://doi.org/10.7554/ELIFE.04617

Article  PubMed  PubMed Central  Google Scholar 

Kaladchibachi SA, Doble B, Anthopoulos N et al (2007) Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium. J Circadian Rhythms 5:3. https://doi.org/10.1186/1740-3391-5-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420. https://doi.org/10.1172/JCI39104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kitabayashi T, Dong Y, Furuta T et al (2019) Identification of GSK3β inhibitor kenpaullone as a temozolomide enhancer against glioblastoma. Sci Rep. https://doi.org/10.1038/S41598-019-46454-8

Article  PubMed  PubMed Central  Google Scholar 

Korur S, Huber RM, Sivasankaran B et al (2009) GSK3β regulates differentiation and growth arrest in glioblastoma. PLoS ONE 4:e7443. https://doi.org/10.1371/JOURNAL.PONE.0007443

Article  PubMed  PubMed Central  Google Scholar 

Kotliarova S, Pastorino S, Kovell LC et al (2008) Glycogen synthase kinase 3 inhibition induces glioma cell death through c-MYC, NF-κB and glucose regulation. Cancer Res 68:6643–6651. https://doi.org/10.1158/0008-5472.CAN-08-0850

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurabayashi N, Hirota T, Sakai M et al (2010) DYRK1A and glycogen synthase kinase 3β, a dual-kinase mechanism directing proteasomal degradation of CRY2 for cir

留言 (0)

沒有登入
gif