Malbari F. Pediatric neuro-oncology. Neurol Clin. 2021;39:829–45.
Wen PY, Packer RJ. The 2021 WHO classification of tumors of the central nervous system: clinical implications. Neuro Oncol. 2021;23:1215–7.
Article PubMed PubMed Central Google Scholar
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23:1231–51.
Article CAS PubMed PubMed Central Google Scholar
Partap S, Monje M. Pediatric brain tumors. Continuum (Minneap Minn). 2020;26:1553–83.
Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, et al. Introduction to radiomics. J Nucl Med. 2020;61:488–95.
Article CAS PubMed PubMed Central Google Scholar
Albalkhi I, Bhatia A, Lösch N, Goetti R, Mankad K. Current state of radiomics in pediatric neuro-oncology practice: a systematic review. Pediatr Radiol. 2023;53:2079–91.
Jaju A, Yeom KW, Ryan ME. MR Imaging of pediatric brain tumors. Diagnostics (Basel). 2022;12:961.
Chilaca Rosas MF, Contreras Aguilar MT, Garcia Lezama M, Salazar Calderon DR, Vargas Del Angel RG, Moreno Jimenez S, et al. Identification of radiomic signatures in brain MRI sequences T1 and T2 that differentiate tumor regions of midline gliomas with H3.3K27M mutation. Diagnostics (Basel). 2023;13:2669.
Cooney TM, Cohen KJ, Guimaraes CV, Dhall G, Leach J, Massimino M, et al. Response assessment in diffuse intrinsic pontine glioma: recommendations from the response assessment in pediatric neuro-oncology (RAPNO) working group. Lancet Oncol. 2020;21:e330–6.
Erker C, Tamrazi B, Poussaint TY, Mueller S, Mata-Mbemba D, Franceschi E, et al. Response assessment in paediatric high-grade glioma: recommendations from the response assessment in pediatric neuro-oncology (RAPNO) working group. Lancet Oncol. 2020;21:e317–29.
Article CAS PubMed Google Scholar
Fangusaro J, Witt O, HernáizDriever P, Bag AK, de Blank P, Kadom N, et al. Response assessment in paediatric low-grade glioma: recommendations from the response assessment in pediatric neuro-oncology (RAPNO) working group. Lancet Oncol. 2020;21:e305–16.
Warren KE, Vezina G, Poussaint TY, Warmuth-Metz M, Chamberlain MC, Packer RJ, et al. Response assessment in medulloblastoma and leptomeningeal seeding tumors: recommendations from the response assessment in pediatric neuro-oncology committee. Neuro Oncol. 2018;20:13–23.
Article CAS PubMed Google Scholar
Baehring JM, Fulbright RK. Diffusion-weighted MRI in neuro-oncology. CNS. Oncol. 2012;1:155–67.
Aboian MS, Kline CN, Li Y, Solomon DA, Felton E, Banerjee A, et al. Early detection of recurrent medulloblastoma: the critical role of diffusion-weighted imaging. Neurooncol Pract. 2018;5:234–40.
PubMed PubMed Central Google Scholar
Tong KA, Ashwal S, Obenaus A, Nickerson JP, Kido D, Haacke EM. Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol. 2008;29:9–17.
Article CAS PubMed PubMed Central Google Scholar
Lequin M, Hendrikse J. Advanced MR imaging in pediatric brain tumors, clinical applications. Neuroimaging Clin N Am. 2017;27:167–90.
Panigrahy A, Blüml S. Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI). J Child Neurol. 2009;24:1343–65.
Zhao B. Understanding sources of variation to improve the reproducibility of radiomics. Front Oncol. 2021;11:633176.
Article PubMed PubMed Central Google Scholar
Kalpathy-Cramer J, Zhao B, Goldgof D, Gu Y, Wang X, Yang H, et al. A comparison of lung nodule segmentation algorithms: methods and results from a multi-institutional study. J Digit Imaging. 2016;29:476–87.
Article PubMed PubMed Central Google Scholar
Peng J, Kim DD, Patel JB, Zeng X, Huang J, Chang K, et al. Deep learning-based automatic tumor burden assessment of pediatric high-grade gliomas, medulloblastomas, and other leptomeningeal seeding tumors. Neuro Oncol. 2022;24:289–99.
Zhou H, Hu R, Tang O, Hu C, Tang L, Chang K, et al. Automatic machine learning to differentiate pediatric posterior fossa tumors on routine MR imaging. AJNR Am J Neuroradiol. 2020;41:1279–85.
Article CAS PubMed PubMed Central Google Scholar
Zhang M, Tam L, Wright J, Mohammadzadeh M, Han M, Chen E, et al. Radiomics can distinguish pediatric supratentorial embryonal tumors, high-grade gliomas, and ependymomas. AJNR Am J Neuroradiol. 2022;43:603–10.
Article CAS PubMed PubMed Central Google Scholar
Li M, Wang H, Shang Z, Yang Z, Zhang Y, Wan H. Ependymoma and pilocytic astrocytoma: differentiation using radiomics approach based on machine learning. J Clin Neurosci. 2020;78:175–80.
Dong J, Li L, Liang S, Zhao S, Zhang B, Meng Y, et al. Differentiation between ependymoma and medulloblastoma in children with radiomics approach. Acad Radiol. 2021;28:318–27.
Novak J, Zarinabad N, Rose H, Arvanitis T, MacPherson L, Pinkey B, et al. Classification of paediatric brain tumours by diffusion weighted imaging and machine learning. Sci Rep. 2021;11:2987.
Article CAS PubMed PubMed Central Google Scholar
Grist JT, Withey S, MacPherson L, Oates A, Powell S, Novak J, et al. Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: a multi-site study. Neuroimage Clin. 2020;25:102172.
Article PubMed PubMed Central Google Scholar
Chilaca-Rosas MF, Contreras-Aguilar MT, Salazar-Calderón DR, García-Lezama M, Roldán-Valadez E. Characterization of central nervous system gliomas in adult patients using radiomics as an emerging technology for precision medicine. Gac Med Mex. 2023;159:432–5.
Iv M, Zhou M, Shpanskaya K, Perreault S, Wang Z, Tranvinh E, et al. MR imaging-based radiomic signatures of distinct molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol. 2019;40:154–61.
Article CAS PubMed PubMed Central Google Scholar
Haldar D, Kazerooni AF, Arif S, Familiar A, Madhogarhia R, Khalili N, et al. Unsupervised machine learning using K-means identifies radiomic subgroups of pediatric low-grade gliomas that correlate with key molecular markers. Neoplasia. 2023;36:100869.
Article CAS PubMed Google Scholar
Gemini L, Tortora M, Giordano P, Prudente ME, Villa A, Vargas O, et al. Vasari scoring system in discerning between different degrees of glioma and IDH status prediction: a possible machine learning application? J Imaging. 2023;9:75.
Article PubMed PubMed Central Google Scholar
García-Lezama M, Carrillo-Ruiz JD, Moreno-Jiménez S, Roldán-Valadez E. WHO CNS5 2021 includes specific mutations in gliomas that can be identified with MRI quantitative biomarkers. Gac Med Mex. 2023;159:161–8.
Park JE, Kickingereder P, Kim HS. Radiomics and deep learning from research to clinical workflow: neuro-oncologic imaging. Korean J Radiol. 2020;21:1126–37.
留言 (0)