Characterizing genetic diversity of Sclerotium rolfsii isolates by biomapping of mycelial compatibility groupings and multilocus sequence analysis

Adandonon A, Aveling TA, Van der Merwe NA, Sanders G (2005) Genetic variation among Sclerotium isolates from Benin and South Africa, determined using mycelial compatibility and ITS rDNA sequence data. Australas Plant Pathol 34:19–25

CAS  Google Scholar 

Agrios GN (2005) Plant pathology. Academic Press, New Delhi

Google Scholar 

Akram A, Amber P, Iqbal SM, Qureshi R, Javaid A, Mukhtar S (2017) RAPD based characterization of chickpea isolates of Sclerotium rolfsii. Pak J Bot 49(5):2015–2022

CAS  Google Scholar 

Almeida AMR, Abdelnoor RV, Calvo ES, Tessnman D, Yorinori JT (2001) Genotypic diversity among Brazilian isolates of Sclerotium rolfsii. J Phytopathol 149(9):493–502

CAS  Google Scholar 

Aycock R (1966) Stem rot and other diseases caused by Sclerotium rolfsii. N Carol Agric Exp Stn Tech Bull 175:1–202

Google Scholar 

Bera SK, Kasundra SV, Kamdar JH, Lal C, Thirumalasmy PP, Dash P, Maurya AK (2014) Variable response of interspecific breeding lines of groundnut to Sclerotium rolfsii infection under field and laboratory conditions. Electron J Plant Breed 5(1):22–29

Google Scholar 

Binder M, Larsson KH, Matheny PB, Hibbett DS (2010) Amylocorticiales ord. nov. and Jaapiales ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102(4):865–880

CAS  PubMed  Google Scholar 

Blanz PA, Unseld M (1987) Ribosomal RNA as a taxonomic tool in mycology. In: de Hoog GS, Smith MT, Weijman AC (eds) The expanding realm of yeast-like fungi. Elsevier, Amsterdam, pp 247–258

Google Scholar 

Bosamia TC, Dodia SM, Mishra GP, Ahmad S, Joshi B, Thirumalaisamy PP, Kumar N, Rathnakumar AL, Sangh C, Kumar A, Thankappan R (2020) Unraveling the mechanisms of resistance to Sclerotium rolfsii in peanut (Arachis hypogaea L.) using comparative RNA-Seq analysis of resistant and susceptible genotypes. PLoS ONE 15(8):e0236823

CAS  PubMed  PubMed Central  Google Scholar 

Brayford D (1990) Vegetative incompatibility in Phomopsis from elm. Mycol Res 94(6):745–752

Google Scholar 

Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Evol Syst 22(1):525–564

Google Scholar 

Cilliers AJ, Herselman L, Pretorius ZA (2000) Genetic variability within and among mycelial compatibility groups of Sclerotium rolfsii in South Africa. Phytopathology 90(9):1026–1031

CAS  PubMed  Google Scholar 

Cullings KW (1992) Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Mol Ecol 1(4):233–240

CAS  Google Scholar 

Daunde AT, Apet KT, Chavan RL (2018) Analysis of genetic diversity in Sclerotium rolfsii causing collar rot of chilli by RAPD. Int J Curr Microbiol Appl Sci 7(12):91–99

Google Scholar 

Durgaprasad S, Reddy NE, Kishore C, Reddy BB, Sudhakar P, Rao SVRK (2008) Variability among the isolates of Sclerotium rolfsii (Sacc.) causing stem rot of peanut (Arachis hypogaea L.). In: The Rovira Rhizosphere Symposium p72

Estrada AER, Del Mar J-G, Royse DJ (2010) Pleurotus eryngii species complex: sequence analysis and phylogeny based on partial EF1α and RPB2 genes. Fungal Biol 114(5–6):421–428

CAS  PubMed  Google Scholar 

Gawande SP, Borkar SG, Chimote VP, Sharma AK (2013) Determination of genetic diversity in Sclerotium rolfsii and Sclerotium delphinii by using RAPD and ISSR markers. Vegetos 26(2s):39–44

Google Scholar 

Glass NL, Kaneko I (2003) Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell 2(1):1–8

CAS  PubMed  PubMed Central  Google Scholar 

Harlton CE, Levesque CA, Punja ZK (1995) Genetic diversity in Sclerotium (Athelia) rolfsii and related species. Phytopathology 85(10):1269–1281

Google Scholar 

Hibbett DS (1992) Ribosomal RNA and fungal systematics. Nippon Kingakkai Kaiho 44(4):533–556

Google Scholar 

Khatri K, Kunwar S, Barocco RL, Dufault NS (2017) Monitoring fungicide sensitivity levels and mycelial compatibility groupings of Sclerotium rolfsii Isolates from Florida peanut fields. Peanut Sci 44(2):83–92

Google Scholar 

Kohn LM, Stasovski E, Carbone I, Royer J, Anderson JB (1991) Mycelial incompatibility and molecular markers identify genetic variability in field populations of Sclerotinia sclerotiorum. Phytopathology 81(4):480–485

Google Scholar 

Koike ST, Gladders P, Paulus AO (2007) Vegetable diseases: a color handbook. Gulf Professional Publishing, Texas

Google Scholar 

Kumari A, Ghatak A (2018) Variability in chickpea rot-causing soil-borne Necrotrophs, Sclerotium rolfsii and Macrophomina phaseolina: variability in chickpea rot-causing Necrotrophs pathogens. J AgriSearch 5(4):247–253

Google Scholar 

Kuninaga S, Natsuaki T, Takeuchi T, Yokosawa R (1997) Sequence variation of the rDNA ITS regions within and between anastomosis groups in Rhizoctonia solani. Curr Genet 32:237–243

CAS  PubMed  Google Scholar 

Le CN, Mendes R, Kruijt M, Raaijmakers JM (2012) Genetic and phenotypic diversity of Sclerotium rolfsii in groundnut fields in central Vietnam. Plant Dis 96(3):389–397

CAS  PubMed  Google Scholar 

Leslie JF (1993) Fungal vegetative compatibility. Annu Rev Phytopathol 31(1):127–150

CAS  PubMed  Google Scholar 

Mahato A, Biswas MK, Patra S (2017) Effect of age on susceptibility of tomato plants to Sclerotium rolfsii (Sacc.) caused collar rot disease. Int J Pure Appl Biosci 5(6):1108–1112

Matheny PB (2006) PCR primers to amplify and sequence RPB2 (RNA polymerase II second largest subunit) in the Basidiomycota (Fungi). J Clin Microbiol 2:1–4

Google Scholar 

Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson RH, Hughes KW, Hofstetter V, Ammirati JF, Schoch CL, Langer E (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol Phylogenet Evol 43(2):430–451

CAS  PubMed  Google Scholar 

Mehri Z, KhodaParast SA, MosaNejad S (2013) Genetic diversity in Sclerotium rolfsii population based on mycelial compatibility groups in Guilan province, Iran. Iran J Plant Pathol 49(3):317–324

Google Scholar 

Mersha Z (2017) Southern blight—a disease becoming more prevalent in Missouri. https://ipm.missouri.edu/MEG/2017/8/southernBlight/

Nalim FA, Starr JL, Woodard KE, Segner S, Keller NP (1995) Mycelial compatibility groups in Texas peanut field populations of Sclerotium rolfsii. Phytopathology 85(12):1507–1512

Google Scholar 

Okabe I, Matsumoto N (2000) Population structure of Sclerotium rolfsii in peanut fields. Mycoscience 41(2):145–148

Google Scholar 

Okabe I, Matsumoto N (2003) Phylogenetic relationship of Sclerotium rolfsii (teleomorph Athelia rolfsii) and S. delphinii based on ITS sequences. Mycol Res 107(2):164–168

CAS  PubMed  Google Scholar 

Okabe I, Morikawa C, Matsumoto N, Yokoyama K (1998) Variation in Sclerotium rolfsii isolates in Japan. Mycoscience 39(4):399–407

Google Scholar 

Parvin N, Bilkiss M, Nahar J, Siddiqua MK, Meah MB (2016) RAPD analysis of Sclerotium rolfsii isolates causing collar rot of eggplant and tomato. Int J Agril Res Innov Technol 6(1):47–57

Google Scholar 

Prasad D, Basha ST, Peddanarappa N, Reddy GE (2010) Molecular variability among the isolates of Sclerotium rolfsii causing stem rot of groundnut by RAPD, ITS-PCR and RFLP. Eur Asian J BioSci 4:80–87

Google Scholar 

Prasad SL, Sujatha K, Naresh N, Rao SC (2012) Variability in Sclerotium rolfsii associated with collar rot of sunflower. Indian Phytopathol 65(2):161–165

Google Scholar 

Punja ZK (1985) The biology, ecology, and control of Sclerotium rolfsii. Annu Rev Phytopathol 23(1):97–127

CAS  Google Scholar 

Punja ZK, Grogan RG (1983) Hyphal interactions and antagonism among field isolates and single-basidiospore strains of Athelia (Sclerotium) rolfsii. Phytopathology 73(9):1279–1284

Google Scholar 

Punja ZK, Sun LJ (2001) Genetic diversity among mycelial compatibility groups of Sclerotium rolfsii (teleomorph Athelia rolfsii) and S. delphinii. Mycol Res 105(5):537–546

CAS  Google Scholar 

Rasu T, Sevugapperumal N, Thiruvengadam R, Ramasamy S (2013) Morphological and genomic variability among Sclerotium rolfsii populations. Bioscan 8(4):1425–1430

CAS  Google Scholar 

Redhead SA, Mullineux ST (2023) Nomenclatural novelties. Index Fungorum 550:1

Google Scholar 

Remesal E, Jordan-Ramirez R, Jimenez-Diaz RM, Navas-Cortes JA (2012) Mycelial compatibility groups and pathogenic diversity in Sclerotium rolfsii populations from sugar beet crops in Mediterranean-type climate regions. Plant Pathol 61(4):739–753

CAS  PubMed  Google Scholar 

Remesal E, Landa BB, Jimenez-Gasco MDM, Navas-Cortes JA (2013) Sequence variation in two protein-coding genes correlates with mycelial compatibility groupings in Sclerotium rolfsii. Phytopathology 103(5):479–487

CAS  PubMed  Google Scholar 

Rolfs PH (1892) Tomato blight. Some hints. Bulletin of Florida Agricultural Experimental Station 18

Sarma BK, Singh UP, Singh KP (2002) Variability in Indian isolates of Sclerotium rolfsii. Mycologia 94(6):1051–1058

CAS  PubMed  Google Scholar 

Singh P, Singh R (2021) Mycelia compatibility groups among the isolates of Sclerotium rolfsii associated with collar rot disease of lentil. Pharma Innov 10(5):770–772

Google Scholar 

Song W, Yan L, Lei Y, Wan L, Huai D, Kang Y, Ren X, Jiang H, Liao B (2018) Analysis of genetic variation among Sclerotium rolfsii isolates from China based on mycelial compatibility groups, ITS sequence and biological characteristics. Acta Phytopathol Sin 48(3):305–312

CAS  Google Scholar 

Srividya PV, Ahamed LM, Ramana JV, Ahammed SK (2022) Studies on diversity of Sclerotium rolfsii causing collar rot in chickpea using morphological and molecular markers. Legum Res 45(1):82–89

Google Scholar 

White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

Google Scholar 

Xie C, Huang CH, Vallad GE (2014) Mycelial compatibility and pathogenic diversity among Sclerotium rolfsii isolates in the southern United States. Plant Dis 98(12):1685–1694

PubMed  Google Scholar 

留言 (0)

沒有登入
gif