Cytoplasmic recycling of rcDNA-containing capsids enhances HBV infection

Hepatitis, B.: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b. Accessed 18 July 2023

Whalley, S.A., Murray, J.M., Brown, D., Webster, G.J., Emery, V.C., Dusheiko, G.M., Perelson, A.S.: Kinetics of acute hepatitis B virus infection in humans. J. Exp. Med. 193(7), 847–854 (2001)

Google Scholar 

Ciupe, S.M., Ribeiro, R.M., Nelson, P.W., Dusheiko, G., Perelson, A.S.: The role of cells refractory to productive infection in acute hepatitis B viral dynamics. Proc. Natl. Acad. Sci. U.S.A. 104(12), 5050–5055 (2007)

Google Scholar 

Ribeiro, R.M., Lo, A., Perelson, A.S.: Dynamics of hepatitis B virus infection. Microbes Infect. 4(8), 829–835 (2002)

Google Scholar 

Huang, H.C., Chen, C.C., Chang, W.C., Tao, M.H., Huang, C.: Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J. Virol. 86(17), 9443–9453 (2012)

Google Scholar 

Yan, H., Zhong, G., Xu, G., He, W., Jing, Z., Gao, Z., Huang, Y., Qi, Y., Peng, B., Wang, H., Fu, L.: Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1, e00049 (2012)

Google Scholar 

Rabe, B., Glebe, D., Kann, M.: Lipid-mediated introduction of hepatitis B virus capsids into nonsusceptible cells allows highly efficient replication and facilitates the study of early infection events. J. Virol. 80(11), 5465–5473 (2006)

Google Scholar 

Lewin, S., Walters, T., Locarnini, S.: Hepatitis B treatment: rational combination chemotherapy based on viral kinetic and animal model studies. Antivir. Res. 55(3), 381–396 (2002)

Google Scholar 

Guo, H., Jiang, D., Zhou, T., Cuconati, A., Block, T.M., Guo, J.T.: Characterization of the intracellular deproteinized relaxed circular DNA of hepatitis B virus: an intermediate of covalently closed circular DNA formation. J. Gen. Virol. 81(22), 12472–12484 (2007)

Google Scholar 

Fatehi, F., Bingham, R.J., Dykeman, E.C., Patel, N., Stockley, P.G., Twarock, R.: An intracellular model of hepatitis B viral infection: an in silico platform for comparing therapeutic strategies. Viruses 13(1), 11 (2021)

Google Scholar 

Saraceni, C., Birk, J.: A review of hepatitis B virus and hepatitis C virus immunopathogenesis. J. Clin. Transl. Hepatol. 9(3), 409–418 (2021)

Google Scholar 

Prifti, G.M., Moianos, D., Giannakopoulou, E., Pardali, V., Tavis, J.E., Zoidis, G.: Recent advances in hepatitis B treatment. Pharmaceuticals 14(5), 417 (2021)

Google Scholar 

Pang, J., Cui, J.A., Hui, J.: The importance of immune responses in a model of hepatitis B virus. Nonlinear Dyn. 67, 723–734 (2012)

MathSciNet  Google Scholar 

Dhar, M., Samaddar, S., Bhattacharya, P.: Modeling the effect of non-cytolytic immune response on viral infection dynamics in the presence of humoral immunity. Nonlinear Dyn. 98, 637–655 (2019)

Google Scholar 

Ji, Y., Min, L., Ye, Y.: Global analysis of a viral infection model with application to HBV infection. J. Biol. Syst. 18(02), 325–337 (2010)

MathSciNet  Google Scholar 

de Carvalho, T., Cristiano, R., Goncalves, L.F., Tonon, D.J.: Global analysis of the dynamics of a mathematical model to intermittent HIV treatment. Nonlinear Dyn. 101, 719–739 (2020)

Google Scholar 

Din, A., Amine, S., Allali, A.: A stochastically perturbed co-infection epidemic model for COVID-19 and hepatitis B virus. Nonlinear Dyn. 111(2), 1921–1945 (2023)

Google Scholar 

Yang, H., Wei, J.: Analyzing global stability of a viral model with general incidence rate and cytotoxic T lymphocytes immune response. Nonlinear Dyn. 82, 713–722 (2015)

MathSciNet  Google Scholar 

Nowak, M.A., Bonhoeffer, S., Hill, A.M., Boehme, R., Thomas, H.C., McDade, H.: Viral dynamics in hepatitis B virus infection. Proc. Natl. Acad. Sci. U.S.A. 93(9), 4398–4402 (1996)

Google Scholar 

Wodarz, D.: Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses. J. Gen. Virol. 84(7), 1743–1750 (2003)

Google Scholar 

Min, L., Su, Y., Kuang, Y.: Mathematical analysis of a basic virus infection model with application to HBV infection. Rocky Mt. J. Math. 38(5), 1573–1585 (2008)

MathSciNet  Google Scholar 

Gourley, S.A., Kuang, Y., Nagy, J.D.: Dynamics of a delay differential equation model of hepatitis B virus infection. J. Biol. Dyn. 2(2), 140–153 (2008)

MathSciNet  Google Scholar 

Hews, S., Eikenberry, S., Nagy, J.D., Kuang, Y.: Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth. J. Math. Biol. 60(4), 573–590 (2010)

MathSciNet  Google Scholar 

Eikenberry, S., Hews, S., Nagy, J.D., Kuang, Y.: The dynamics of a delay model of HBV infection with logistic hepatocyte growth. Math. Biosci. Eng. 6, 1–17 (2009)

MathSciNet  Google Scholar 

Huang, G., Ma, W., Takeuchi, Y.: Global properties for virus dynamics model with Beddington–DeAngelis functional response. Appl. Math. Lett. 22(11), 1690–1693 (2009)

MathSciNet  Google Scholar 

Wang, X., Tao, Y., Song, X.: Global stability of a virus dynamics model with Beddington–DeAngelis incidence rate and CTL immune response. Nonlinear Dyn. 66, 825–830 (2011)

MathSciNet  Google Scholar 

Ji, Y., Min, L., Zheng, Y., Su, Y.: A viral infection model with periodic immune response and nonlinear CTL response. Math. Comput. Simul. 80(12), 2309–2316 (2010)

MathSciNet  Google Scholar 

Wang, K., Fan, A., Torres, A.: Global properties of an improved hepatitis B virus model. Nonlinear Anal. Real World Appl. 11(4), 3131–3138 (2010)

MathSciNet  Google Scholar 

Chenar, F.F., Kyrychko, Y., Blyuss, K.: Mathematical model of immune response to hepatitis B. J. Theor. Biol. 447, 98–110 (2018)

MathSciNet  Google Scholar 

Murray, J.M., Purcell, R.H., Wieland, S.F.: The half-life of hepatitis B virions. Hepatology 44(5), 1117–1121 (2006)

Google Scholar 

Manna, K., Chakrabarty, S.P.: Chronic hepatitis B infection and HBV DNA-containing capsids: modeling and analysis. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 383–395 (2015)

MathSciNet  Google Scholar 

Danane, J., Meskaf, A., Allali, K.: Optimal control of a delayed hepatitis B viral infection model with HBV DNA-containing capsids and CTL immune response. Optim. Control Appl. Methods 39(3), 1262–1272 (2018)

MathSciNet  Google Scholar 

Guo, T., Liu, H., Xu, C., Yan, F.: Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discret. Contin. Dyn. Syst. B 23(10), 4223 (2018)

MathSciNet  Google Scholar 

Liu, S., Zhang, R.: On an age-structured hepatitis B virus infection model with HBV DNA-containing capsids. Bull. Malays. Math. Sci. Soc. 44(3), 1345–1370 (2021)

MathSciNet  Google Scholar 

Song, B., Zhang, Y., Sang, Y., Zhang, L.: Stability and Hopf bifurcation on an immunity delayed HBV/HCV model with intra-and extra-hepatic coinfection and saturation incidence. Nonlinear Dyn. 111(15), 14485–14511 (2023)

Google Scholar 

Dias, J.D., Sarica, N., Neuveut, C.: Early steps of hepatitis B life cycle: from capsid nuclear import to cccDNA formation. Viruses 13(5), 757 (2021)

Google Scholar 

Thio, C.L., Taddese, M., Saad, Y., Zambo, K., Ribeiro, R.M., Grudda, T., Sulkowski, M.S., Sterling, R.K., Zhang, Y., Young, E.D., Hwang, H.S.: Hepatitis B e antigen-negative single hepatocyte analysis shows transcriptional silencing and slow decay of infected cells with treatment. J. Infect. Dis. 228(9), 1219–1226 (2023)

Google Scholar 

Summers, J.E.S.S.E., Smith, P.M., Horwich, A.L.: Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification. J. Virol. 64(6), 2819–2824 (1990)

Google Scholar 

Asabe, S., Wieland, S.F., Chattopadhyay, P.K., Roederer, M., Engle, R.E., Purcell, R.H., Chisari, F.V.: The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J. Virol. 83(19), 9652–9662 (2009)

Google Scholar 

Miao, H., Xia, X., Perelson, A.S., Wu, H.: On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Rev. 53(1), 3–39 (2011)

MathSciNet  Google Scholar 

Bellman, R., Åström, K.J.: On structural identifiability. Math. Biosci. 7(3–4), 329–339 (1970)

Google Scholar 

Vajda, S., Godfrey, K.R., Rabitz, H.: Similarity transformation approach to identifiability analysis of nonlinear compartmental models. Math. Biosci. 93(2), 217–248 (1989)

MathSciNet  Google Scholar 

Denis-Vidal, L., Joly-Blanchard, G.: An easy to check criterion for (un) indentifiability of uncontrolled systems and its applications. IEEE Trans. Auto. Control 45(4), 768–771 (2000)

Google Scholar 

Xia, X., Moog, C.H.: Identifiability of nonlinear systems with application to HIV/AIDS models. IEEE Trans. Auto. Control 48(2), 330–336 (2003)

MathSciNet  Google Scholar 

Bellu, G., Saccomani, M.P., Audoly, S., D’Angiò, L.: DAISY: a new software tool to test global identifiability of biological and physiological systems. Comput. Methods Programs Biomed. 88(1), 52–61 (2007)

Google Scholar 

Murray, J.M., Goyal, A.: In silico single cell dynamics of hepatitis B virus infection and clearance. J. Theor. Biol. 366, 91–102 (2015)

Google Scholar 

Ko, C., Chakraborty, A., Chou, W.M., Hasreiter, J., Wettengel, J.M., Stadler, D., Bester, R., Asen, T., Zhang, K., Wisskirchen, K., McKeating, J.A.: Hepatitis B virus genome recycling and de novo secondary infection events maintain stable cccDNA levels. J. Hepatol. 69(6), 1231–1241 (2018)

Google Scholar 

Chen, X., Min, L., Zheng, Y., Kuang, Y., Ye, Y.: Dynamics of acute hepatitis B virus infection in chimpanzees. Math. Comput. Simul. 96, 157–170 (2014)

MathSciNet  Google Scholar 

Sontag, E.D.: For differential equations with r parameters, 2r+ 1 experiments are enough for identification. J. Nonlinear Sci. 12, 553–583 (2003)

MathSciNet  Google Scholar 

Hepatitis, B.: https://www.hepb.org/what-is-hepatitis-b/what-is-hepb/ (2024)

Tu, T., et al.: The lived experience of chronic hepatitis B: a broader view of its impacts and why we need a cure. Viruses 12(5), 515 (2020)

Google Scholar 

Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.: On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28(4), 365–382 (1990)

MathSciNet  Google Scholar 

Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

MathSciNet  Google Scholar 

Martcheva, M.: An Introduction to Mathematical Epidemiology, vol. 61. Springer (2015)

Google Scholar 

Kajiwara, T., Sasaki, T., Takeuchi, Y.: Construction of Lyapunov functionals for delay differential equations in virology and epidemiology. Nonlinear Anal. Real World Appl. 13(4), 1802–1826 (2012)

MathSciNet 

留言 (0)

沒有登入
gif