Hu X, Chen F, Jia L, Long A, Peng Y, Li X, et al. A gut-derived hormone regulates cholesterol metabolism. Cell. 2024;187(7):1685-1700.e18.
Article CAS PubMed Google Scholar
Han F, Liu X, Chen C, Liu Y, Du M, Zhou Y, et al. Hypercholesterolemia risk-associated GPR146 is an orphan G-protein coupled receptor that regulates blood cholesterol levels in humans and mice. Cell Res. 2020;30:363–5.
Article PubMed PubMed Central Google Scholar
Yu H, Rimbert A, Palmer AE, Toyohara T, Xia Y, Xia F, et al. GPR146 deficiency protects against hypercholesterolemia and atherosclerosis. Cell. 2019;179(6):1276-1288.e14.
Article CAS PubMed PubMed Central Google Scholar
Huang J, Xie Y, Chen B, Xia Y, Jiang Y, Sun Z, et al. GPR146 regulates pulmonary vascular remodeling by promoting pulmonary artery smooth muscle cell proliferation through 5-lipoxygenase. Eur J Pharmacol. 2023;961: 176123.
Article CAS PubMed Google Scholar
Kaczmarek I, Wower I, Ettig K, Kuhn CK, Kraft R, Landgraf K, et al. Identifying G protein-coupled receptors involved in adipose tissue function using the innovative RNA-seq database FATTLAS. iScience. 2023;26(10): 107841.
Article CAS PubMed PubMed Central Google Scholar
Seidu S, Alabraba V, Davies S, Newland-Jones P, Fernando K, Bain SC, et al. SGLT2 inhibitors—the new standard of care for cardiovascular, renal and metabolic protection in type 2 diabetes: a narrative review. Diabetes Therapy. 2024;5(5):1099–124.
Marfella R, Scisciola L, D’Onofrio N, Maiello C, Trotta MC, Sardu C, et al. Sodium-glucose cotransporter-2 (SGLT2) expression in diabetic and non-diabetic failing human cardiomyocytes. Pharmacol Res. 2022;184: 106448.
Article CAS PubMed Google Scholar
D’Onofrio N, Sardu C, Trotta MC, Scisciola L, Turriziani F, Ferraraccio F, et al. Sodium-glucose co-transporter2 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of sodium-glucose co-transporter2 inhibitor treatment. Mol Metab. 2021;54:10133.
Clementi E, Corbi G, Boccardi V, Scisciola L. Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: data from basic science and clinical trials. Front Cardiovasc Med. 2022;9:1008922.
Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017;35(4):316–9.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(34):15545–50.
Article CAS PubMed PubMed Central Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;11:2498–504.
Lefterova MI, Zhang Y, Steger DJ, Schupp M, Schug J, Cristancho A, et al. PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 2008;22(21):2941–52.
Article CAS PubMed PubMed Central Google Scholar
Li Y, Huang X, Yang G, Xu K, Yin Y, Brecchia G, et al. CD36 favours fat sensing and transport to govern lipid metabolism. Prog Lipid Res. 2022;88(88): 101193.
Article CAS PubMed Google Scholar
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science (1979). 2015;347(6220).
Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022;19:593–606.
Article CAS PubMed PubMed Central Google Scholar
Tinahones F, Salas J, Mayas MD, Ruiz-Villalba A, Macias-Gonzalez M, Garrido-Sanchez L, et al. VEGF gene expression in adult human thymus fat: a correlative study with hypoxic induced factor and cyclooxigenase-2. PLoS ONE. 2009;4(12):e8213.
Article PubMed PubMed Central Google Scholar
Szekeres Z, Toth K, Szabados E. The effects of sglt2 inhibitors on lipid metabolism. Metabolites. 2021;11(2):1–9.
Nagao M, Sasaki J, Tanimura-Inagaki K, Sakuma I, Sugihara H, Oikawa S. Ipragliflozin and sitagliptin differentially affect lipid and apolipoprotein profiles in type 2 diabetes: the SUCRE study. Cardiovasc Diabetol. 2024. https://doi.org/10.1186/s12933-024-02149-7.
Article PubMed PubMed Central Google Scholar
Basu D, Huggins LA, Scerbo D, Obunike J, Mullick AE, Rothenberg PL, et al. Mechanism of increased LDL and decreased triglycerides with SGLT2 inhibition HHS public access. Arterioscler Thromb Vasc Biol. 2018;38(9):2207–16.
Article CAS PubMed PubMed Central Google Scholar
Ji W, Zhao M, Wang M, Yan W, Liu Y, Ren S, et al. Effects of canagliflozin on weight loss in high-fat diet-induced obese mice. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0179960.
Article PubMed PubMed Central Google Scholar
Packer M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation. 2022;146:1383–405.
Article CAS PubMed PubMed Central Google Scholar
Hoong CWS, Chua MWJ. SGLT2 inhibitors as calorie restriction mimetics: insights on longevity pathways and age-related diseases. Endocrinology (United States). 2021. https://doi.org/10.1210/endocr/bqab079.
Masson W, Lavalle-Cobo A, Nogueira JP. Effect of sglt2-inhibitors on epicardial adipose tissue: a meta-analysis. Cells. 2021;10:2150.
Article PubMed PubMed Central Google Scholar
Cinti F, Leccisotti L, Sorice GP, Capece U, D’Amario D, Lorusso M, et al. Dapagliflozin treatment is associated with a reduction of epicardial adipose tissue thickness and epicardial glucose uptake in human type 2 diabetes. Cardiovasc Diabetol. 2023. https://doi.org/10.1186/s12933-023-02091-0.
Article PubMed PubMed Central Google Scholar
Araszkiewicz A, Bandurska-Stankiewicz E, Borys S, et al. Guidelines on the management of patients with diabetes: a position of diabetes poland. Curr Top Diabetes. 2022;2(1):1–130.
留言 (0)