Potential mechanisms of cancer prevention and treatment by sulforaphane, a natural small molecule compound of plant-derived

Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–65. https://doi.org/10.1002/jcb.30344.

Article  CAS  PubMed  Google Scholar 

Alumkal JJ, Slottke R, Schwartzman J, Cherala G, Munar M, Graff JN, et al. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Invest New Drugs. 2015;33(2):480–9. https://doi.org/10.1007/s10637-014-0189-z.

Article  CAS  PubMed  Google Scholar 

Baig MH, Adil M, Khan R, Dhadi S, Ahmad K, Rabbani G, et al. Enzyme targeting strategies for prevention and treatment of cancer: implications for cancer therapy. Semin Cancer Biol. 2019;56:1–11. https://doi.org/10.1016/j.semcancer.2017.12.003.

Article  CAS  PubMed  Google Scholar 

Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9. https://doi.org/10.1038/nature16932.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balakumar K, Raghavan CV, selvan NT, prasad RH, Abdu S. Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B Biointerfaces. 2013;112:337–43. https://doi.org/10.1016/j.colsurfb.2013.08.025.

Article  CAS  PubMed  Google Scholar 

Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34. https://doi.org/10.1038/nm.4409.

Article  CAS  PubMed  Google Scholar 

Bijangi-Vishehsaraei K, Reza Saadatzadeh M, Wang H, Nguyen A, Kamocka MM, Cai W, et al. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg. 2017;127(6):1219–30. https://doi.org/10.3171/2016.8.JNS161197.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bones AM, Rossiter JT. The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry. 2006;67(11):1053–67. https://doi.org/10.1016/j.phytochem.2006.02.024.

Article  CAS  PubMed  Google Scholar 

Bose C, Awasthi S, Sharma R, Benes H, Hauer-Jensen M, Boerma M, et al. Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model. PLoS ONE. 2018;13(3). https://doi.org/10.1371/journal.pone.0193918. e0193918.

Briones-Herrera A, Eugenio-Perez D, Reyes-Ocampo JG, Rivera-Mancia S, Pedraza-Chaverri J. New highlights on the health-improving effects of sulforaphane. Food Funct. 2018;9(5):2589–606. https://doi.org/10.1039/c8fo00018b.

Article  CAS  PubMed  Google Scholar 

Brooks JD, Paton VG, Vidanes G. Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomarkers Prev. 2001;10(9):949–54. https://doi.org/10.1023/A:1011247024979.

Article  CAS  PubMed  Google Scholar 

Carlos-Reyes A, Lopez-Gonzalez JS, Meneses-Flores M, Gallardo-Rincon D, Ruiz-Garcia E, Marchat LA, et al. Dietary compounds as Epigenetic Modulating agents in Cancer. Front Genet. 2019;10:79. https://doi.org/10.3389/fgene.2019.00079.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17(7):395–417. https://doi.org/10.1038/s41571-020-0341-y.

Article  PubMed  PubMed Central  Google Scholar 

Carrasco-Pozo C, Tan KN, Rodriguez T, Avery VM. The Molecular effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 activation of androgen receptor. Int J Mol Sci. 2019;20(21):5384. https://doi.org/10.3390/ijms20215384.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen K, Demarco B, Broz P. Beyond inflammasomes: emerging function of gasdermins during apoptosis and NETosis. EMBO J. 2020;39(2):e103397. https://doi.org/10.15252/embj.2019103397.

Article  CAS  PubMed  Google Scholar 

Chen Y, Wang M, Wu J, Zhu J, Xie C, Li X, et al. DeltaNp63alpha mediates sulforaphane suppressed colorectal cancer stem cell properties through transcriptional regulation of Nanog/Oct4/Sox2. J Nutr Biochem. 2022;107:109067. https://doi.org/10.1016/j.jnutbio.2022.109067.

Article  CAS  PubMed  Google Scholar 

Chen X, Adhikary G, Ma E, Newland JJ, Naselsky W, Xu W, et al. Sulforaphane inhibits CD44v6/YAP1/TEAD signaling to suppress the cancer phenotype. Mol Carcinog. 2023;62(2):236–48. https://doi.org/10.1002/mc.23479.

Article  CAS  PubMed  Google Scholar 

Cheng Y, Tsai C, Hsu Y. Sulforaphane, a Dietary Isothiocyanate, induces G(2)/M arrest in Cervical Cancer cells through CyclinB1 downregulation and GADD45beta/CDC2 Association. Int J Mol Sci. 2016;17(9):1530. https://doi.org/10.3390/ijms17091530.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Čižauskaitė A, Šimčikas D, Schultze D, Kallifatidis G, Bruns H, Čekauskas A, et al. Sulforaphane has an additive anticancer effect to FOLFOX in highly metastatic human colon carcinoma cells. Oncol Rep. 2022;48(5):205. https://doi.org/10.3892/or.2022.8420.

Article  PubMed  Google Scholar 

Demaria M, O’Leary MN, Chang J, Shao L, Liu S, Alimirah F, et al. Cellular Senescence promotes adverse effects of Chemotherapy and Cancer Relapse. Cancer Discov. 2017;7(2):165–76. https://doi.org/10.1158/2159-8290.CD-16-0241.

Article  CAS  PubMed  Google Scholar 

Dos Santos P, Machado ART, De Grandis RA, Ribeiro DL, Tuttis K, Morselli M, et al. Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020;136:111047. https://doi.org/10.1016/j.fct.2019.111047.

Article  CAS  PubMed  Google Scholar 

Ehmsen S, Pedersen MH, Wang G, Terp MG, Arslanagic A, Hood BL, et al. Increased cholesterol biosynthesis is a key characteristic of breast Cancer stem cells influencing patient outcome. Cell Rep. 2019;27(13):3927–e39383926. https://doi.org/10.1016/j.celrep.2019.05.104.

Article  CAS  PubMed  Google Scholar 

Fidler MM, Bray F, Soerjomataram I. The global cancer burden and human development: a review. Scand J Public Health. 2018;46(1):27–36. https://doi.org/10.1177/1403494817715400.

Article  PubMed  Google Scholar 

Fisher ML, Adhikary G, Grun D, Kaetzel DM, Eckert RL. The Ezh2 polycomb group protein drives an aggressive phenotype in melanoma cancer stem cells and is a target of diet derived sulforaphane. Mol Carcinog. 2016;55(12):2024–36. https://doi.org/10.1002/mc.22448.

Article  CAS  PubMed  Google Scholar 

Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147(4):742–58. https://doi.org/10.1016/j.cell.2011.10.033.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gasparello J, Gambari L, Papi C, Rozzi A, Manicardi A, Corradini R, et al. High levels of apoptosis are Induced in the human Colon cancer HT-29 cell line by Co-administration of Sulforaphane and a peptide nucleic acid targeting miR-15b-5p. Nucleic Acid Ther. 2020;30(3):164–74. https://doi.org/10.1089/nat.2019.0825.

Article  CAS  PubMed  Google Scholar 

Gasparello J, Papi C, Zurlo M, Gambari L, Manicardi A, Rozzi A, et al. MicroRNAs mir-584-5p and mir-425-3p are Up-Regulated in plasma of Colorectal Cancer (CRC) patients: targeting with inhibitor peptide nucleic acids is Associated with induction of apoptosis in Colon Cancer cell lines. Cancers (Basel). 2022a;15(1):128. https://doi.org/10.3390/cancers15010128.

Article  CAS  PubMed  Google Scholar 

Gasparello J, Papi C, Zurlo M, Gambari L, Rozzi A, Manicardi A, et al. Treatme

留言 (0)

沒有登入
gif