Does Swimming Exercise Impair Bone Health? A Systematic Review and Meta-Analysis Comparing the Evidence in Humans and Rodent Models

Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: Potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis. 2016;8(6):225–35. https://doi.org/10.1177/1759720x16670154.

Article  CAS  PubMed  PubMed Central  Google Scholar 

World Health Organization. WHO guidelines approved by the guidelines review committee. Global recommendations on physical activity for health. World Health Organization, Geneva. 2010.

Vickerton P, Jarvis JC, Gallagher JA, Akhtar R, Sutherland H, Jeffery N. Morphological and histological adaptation of muscle and bone to loading induced by repetitive activation of muscle. Proc Biol Sci. 2014;281(1788):1–9. https://doi.org/10.1098/rspb.2014.0786.

Article  Google Scholar 

Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–386. https://doi.org/10.1007/s00198-015-3440-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warden SJ, Mantila Roosa SM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci USA. 2014;111(14):5337–42. https://doi.org/10.1073/pnas.1321605111.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dowthwaite JN, Scerpella TA. Distal radius geometry and skeletal strength indices after peripubertal artistic gymnastics. Osteoporos Int. 2011;22(1):207–16. https://doi.org/10.1007/s00198-010-1233-2.

Article  CAS  PubMed  Google Scholar 

Zhu X, Zheng H. Factors influencing peak bone mass gain. Front Med. 2021;15(1):53–69. https://doi.org/10.1007/s11684-020-0748-y.

Article  PubMed  Google Scholar 

Freitas L, Bezerra A, Amorim T, Fernandes RJ, Duarte J, Fonseca H. Is competitive swimming training a risk factor for osteoporosis? A systematic review of the literature and quality of evidence. Ger J Exerc Sport Res. 2022:1–11. https://doi.org/10.1007/s12662-022-00849-4

Abrahin O, Rodrigues RP, Marçal AC, Alves EAC, Figueiredo RC, de Sousa EC. Swimming and cycling do not cause positive effects on bone mineral density: a systematic review. Rev Bras Reumatol. 2016;56(4):345–51. https://doi.org/10.1016/j.rbre.2016.02.013.

Article  Google Scholar 

Duncan CS, Blimkie CJR, Cowell CT, Burke ST, Briody JN, Howman-Giles R. Bone mineral density in adolescent female athletes: relationship to exercise type and muscle strength. Med Sci Sports Exerc. 2002;34(2):286–94. https://doi.org/10.1097/00005768-200202000-00017.

Article  PubMed  Google Scholar 

Bellver M, Del Rio L, Jovell E, Drobnic F, Trilla A. Bone mineral density and bone mineral content among female elite athletes. Bone. 2019;127:393–400. https://doi.org/10.1016/j.bone.2019.06.030

Valente-Dos-Santos J, Tavares OM, Duarte JP, Sousa ESPM, Rama LM, Casanova JM, et al. Total and regional bone mineral and tissue composition in female adolescent athletes: comparison between volleyball players and swimmers. BMC Pediatr. 2018;18(1):212. https://doi.org/10.1186/s12887-018-1182-z.

Article  PubMed  PubMed Central  Google Scholar 

Magkos F, Kavouras SA, Yannakoulia M, Karipidou M, Sidossi S, Sidossis LS. The bone response to non-weight-bearing exercise is sport-, site-, and sex-specific. Clin J Sport Med. 2007;17(2):123–8. https://doi.org/10.1097/JSM.0b013e318032129d.

Article  PubMed  Google Scholar 

Trappe TA, Gastaldelli A, Jozsi AC, Troup JP, Wolfe RR. Energy expenditure of swimmers during high volume training. Med Sci Sports Exerc. 1997;29(7):950–4. https://doi.org/10.1097/00005768-199707000-00015.

Article  CAS  PubMed  Google Scholar 

Melin A, Torstveit MK, Burke L, Marks S, Sundgot-Borgen J. Disordered eating and eating disorders in aquatic sports. Int J Sport Nutr Exerc Metab. 2014;24(4):450–9. https://doi.org/10.1123/ijsnem.2014-0029.

Article  PubMed  Google Scholar 

Portier H, Benaitreau D, Pallu S. Does physical exercise always improve bone quality in rats? Life (Basel). 2020;10(10):1–34. https://doi.org/10.3390/life10100217.

Article  Google Scholar 

Taaffe DR, Snowharter C, Connolly DA, Robinson TL, Brown MD, Marcus R. Differential-effects of swimming versus weight-bearing activity on bone-mineral status of eumenorrheic athletes. J Bone Miner Res. 1995;10(4):586–93.

Article  CAS  PubMed  Google Scholar 

Czeczelewski J, Dlugolecka B, Czeczelewska E, Raczynska B. Intakes of selected nutrients, bone mineralisation and density of adolescent female swimmers over a three-year period. Biol Sport. 2013;30(1):17–20. https://doi.org/10.5604/20831862.1029816.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ju YI, Sone T, Ohnaru K, Tanaka K, Fukunaga M. Effect of swimming exercise on three-dimensional trabecular bone microarchitecture in ovariectomized rats. J Appl Physiol. 2015;119(9):990–7. https://doi.org/10.1152/japplphysiol.00147.2015.

Article  CAS  PubMed  Google Scholar 

Kang YS, Kim SH, Kim JC. Effects of swimming exercise on high-fat diet-induced low bone mineral density and trabecular bone microstructure in rats. J Exerc Nutrition Biochem. 2017;21(2):48–55. https://doi.org/10.20463/jenb.2016.0063

Bezerra A, Freitas L, Maciel L, Fonseca H. Bone tissue responsiveness to mechanical loading-possible long-term implications of swimming on bone health and bone development. Curr Osteoporos Rep. 2022;20(6):453–68. https://doi.org/10.1007/s11914-022-00758-3.

Article  PubMed  Google Scholar 

Gomez-Bruton A, Montero-Marin J, Gonzalez-Aguero A, Garcia-Campayo J, Moreno LA, Casajus JA, et al. The effect of swimming during childhood and adolescence on bone mineral density: a systematic review and meta-analysis. Sports Med. 2016;46(3):365–79. https://doi.org/10.1007/s40279-015-0427-3.

Article  PubMed  Google Scholar 

Gomez-Bruton A, Montero-Marin J, Gonzalez-Aguero A, Gomez-Cabello A, Garcia-Campayo J, Moreno LA, et al. Swimming and peak bone mineral density: a systematic review and meta-analysis. J Sports Sci. 2017;36(4):365–77. https://doi.org/10.1080/02640414.2017.1307440

Fonseca H, Moreira-Goncalves D, Coriolano HJ, Duarte JA. Bone quality: the determinants of bone strength and fragility. Sports Med. 2014;44(1):37–53. https://doi.org/10.1007/s40279-013-0100-7.

Article  PubMed  Google Scholar 

Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160. https://doi.org/10.1136/bmj.n160

The International Society for Clinical Densitometry. 2019 ISCD Official positions pediatric. ISCD Board. 2019.

Pang Q, Xu Y, Huang L, Li Y, Lin Y, Hou Y, et al. Bone geometry, density, microstructure, and biomechanical properties in the distal tibia in patients with primary hypertrophic osteoarthropathy assessed by second-generation high-resolution peripheral quantitative computed tomography. J Bone Miner Res. 2021;00(00):1–10. https://doi.org/10.1002/jbmr.4488.

Article  CAS  Google Scholar 

Whittier DE, Boyd SK, Burghardt AJ, Paccou J, Ghasem-Zadeh A, Chapurlat R, et al. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int. 2020;31(9):1607–27. https://doi.org/10.1007/s00198-020-05438-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4(6):624–30.

PubMed  PubMed Central  Google Scholar 

Ribeiro-Dos-Santos MR, Lynch KR, Agostinete RR, Maillane-Vanegas S, Turi-Lynch B, Ito IH, et al. Prolonged practice of swimming is negatively related to bone mineral density gains in adolescents. J Bone Metab. 2016;23(3):149–55. https://doi.org/10.11005/jbm.2016.23.3.149

Huang TH, Hsieh SS, Liu SH, Chang FL, Lin SC, Yang RS. Swimming training increases the post-yield energy of bone in young male rats. Calcif Tissue Int. 2010;86(2):142–53. https://doi.org/10.1007/s00223-009-9320-0.

Article  CAS  PubMed  Google Scholar 

Oh T, Tanaka S, Naka T, Igawa S. Effects of high-intensity swimming training on the bones of ovariectomized rats. J Exerc Nutrition Biochem. 2016;20(3):39–45. https://doi.org/10.20463/jenb.2016.09.20.3.6

Buie HR, Boyd SK. Reduced bone mass accrual in swim-trained prepubertal mice. Med Sci Sports Exerc. 2010;42(10):1834–42. https://doi.org/10.1249/MSS.0b013e3181dd25d4.

Article  PubMed  Google Scholar 

Gomes GD, da Silva MF, da Silva E, Del Carlo RJ, da Cunha DNQ, Carneiro-Junior MA, et al. Swimming training does not affect the recovery of femoral midshaft structural and mechanical properties in growing diabetic rats treated with insulin. Life (Basel). 2021;11(8):1–11. https://doi.org/10.3390/life11080786.

Article  CAS  Google Scholar 

Snyder A, Zierath JR, Hawley JA, Sleeper MD, Craig BW. The effects of exercise mode, swimming vs. running, upon bone growth in the rapidly growing female rat. Mech Ageing Dev. 1992;66(1):59–69. https://doi.org/10.1016/0047-6374(92)90073-m

Agostinete RR, Maillane-Vanegas S, Lynch KR, Turi-Lynch B, Coelho-e-Silva MJ, Campos EZ, et al. The impact of training load on bone mineral density of adolescent swimmers: a structural equation modeling approach. Pediatr Exerc Sci. 2017;29(4):520–8. https://doi.org/10.1123/pes.2017-0008.

Article  PubMed 

留言 (0)

沒有登入
gif