Dissecting the multifaceted roles of autophagy in cancer initiation, growth, and metastasis: from molecular mechanisms to therapeutic applications

Butler DE, Marlein C, Walker HF, Frame FM, Mann VM, Simms MS, Davies BR, Collins AT, Maitland NJ. Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.18082.

Article  PubMed  PubMed Central  Google Scholar 

Nakahira K, Cloonan SM, Mizumura K, Choi AMK, Ryter SW. Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxid Redox Signal. 2014. https://doi.org/10.1089/ars.2013.5373.

Article  PubMed  PubMed Central  Google Scholar 

Ryter SW, Cloonan SM, Choi AMK. Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells. 2013. https://doi.org/10.1007/s10059-013-0140-8.

Article  PubMed  PubMed Central  Google Scholar 

Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011. https://doi.org/10.1101/gad.2016211.

Article  PubMed  PubMed Central  Google Scholar 

Xia HG, Zhang L, Chen G, Zhang T, Liu J, Jin M, Xiuquan M, Dawei M, Yuan J. Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy. 2010. https://doi.org/10.4161/auto.6.1.10326.

Article  PubMed  Google Scholar 

Decuypere JP, Kindt D, Luyten T, Welkenhuyzen K, Missiaen L, Smedt HD, Bultynck G, Parys JB. mTOR-controlled autophagy requires intracellular Ca2+ signaling. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0061020.

Article  PubMed  PubMed Central  Google Scholar 

Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature. 2004. https://doi.org/10.1038/nature03029.

Article  PubMed  Google Scholar 

Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X. ULK1·ATG13·FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009. https://doi.org/10.1074/jbc.M900573200.

Article  PubMed  PubMed Central  Google Scholar 

Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011. https://doi.org/10.1038/ncb2152.

Article  PubMed  PubMed Central  Google Scholar 

Bartolomeo SD, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, Pagliarini V, Matteoni S, Fuoco C, Giunta L, D’Amelio M, Nardacci R, Romagnoli A, Piacentini M, Cecconi F, Fimia GM. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol. 2010. https://doi.org/10.1083/jcb.201002100.

Article  PubMed  PubMed Central  Google Scholar 

Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mulé JJ, Pledger WJ, Wang HG. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol. 2007. https://doi.org/10.1038/ncb1634.

Article  PubMed  PubMed Central  Google Scholar 

Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 2009. https://doi.org/10.1038/ncb1846.

Article  PubMed  Google Scholar 

Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol. 2009. https://doi.org/10.1038/ncb1854.

Article  PubMed  PubMed Central  Google Scholar 

Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, Adi-Harel S, Hirsch JA, Stein R, Pinkas-Kramarski R. Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy. 2007. https://doi.org/10.4161/auto.4713.

Article  PubMed  Google Scholar 

Pattingre S, Tassa A, Qu X, Garuti R, Xiao HL, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005. https://doi.org/10.1016/j.cell.2005.07.002.

Article  PubMed  Google Scholar 

Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DCO, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010. https://doi.org/10.1152/physrev.00030.2009.

Article  PubMed  Google Scholar 

Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020;19:12. https://doi.org/10.1186/s12943-020-1138-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dowling RJO, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, Wang X, Larsson O, Selvaraj A, Liu Y, Kozma SC, Thomas G, Sonenberg N. mTORCI-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science. 2010. https://doi.org/10.1126/science.1187532.

Article  PubMed  PubMed Central  Google Scholar 

Lamanuzzi A, Saltarella I, Desantis V, Frassanito MA, Leone P, Racanelli V, Nico B, Ribatti D, Ditonno P, Prete M, Solimando AG, Dammacco F, Vacca A, Ria R. Inhibition of mTOR complex 2 restrains tumor angiogenesis in multiple myeloma. Oncotarget. 2018. https://doi.org/10.18632/oncotarget.25003.

Article  PubMed  PubMed Central  Google Scholar 

Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA. 1998. https://doi.org/10.1073/pnas.95.4.1432.

Article  PubMed  PubMed Central  Google Scholar 

Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, Kasuga M, Nishimoto I, Avruch J. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem. 1997. https://doi.org/10.1074/jbc.272.42.26457.

Article  PubMed  Google Scholar 

Dos DS, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004. https://doi.org/10.1016/j.cub.2004.06.054.

Article  Google Scholar 

Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002. https://doi.org/10.1016/S0092-8674(02)00808-5.

Article  PubMed  Google Scholar 

Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KVP, Erdjument-Bromage H, Tempst P, Sabatini DM. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 2003. https://doi.org/10.1016/S1097-2765(03)00114-X.

Article  PubMed  Google Scholar 

Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002. https://doi.org/10.1016/S1097-2765(02)00636-6.

Article  PubMed  Google Scholar 

Choi SI, Maeng YS, Kim KS, Kim TI, Kim EK. Autophagy is induced by raptor degradation via the ubiquitin/proteasome system in granular corneal dystrophy type 2. Biochem Biophys Res Commun. 2014. https://doi.org/10.1016/j.bbrc.2014.07.035.

Article  PubMed  PubMed Central  Google Scholar 

Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002. https://doi.org/10.1016/S0092-8674(02)00833-4.

Article  PubMed  Google Scholar 

Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004. https://doi.org/10.1016/j.ccr.2004.06.007.

Article  PubMed 

留言 (0)

沒有登入
gif